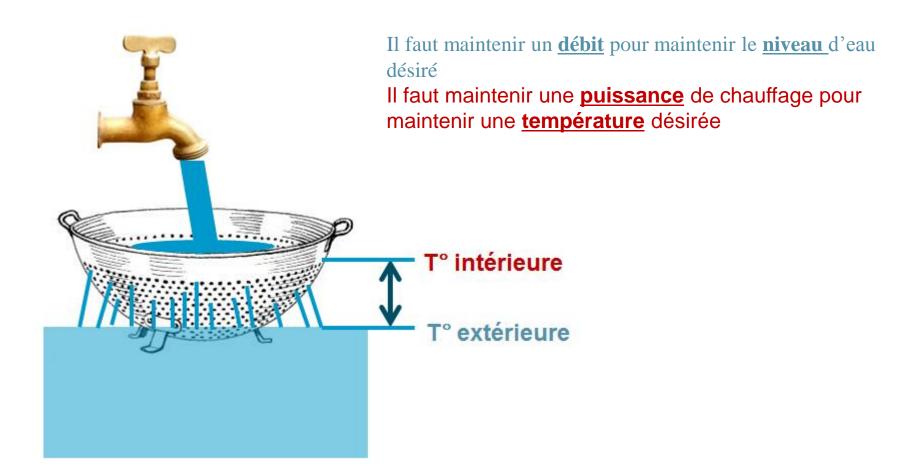
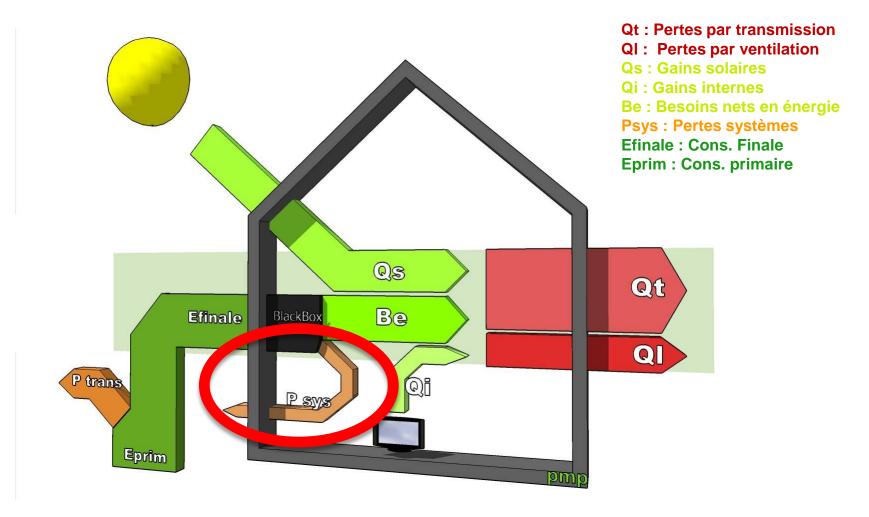

Installations de chauffage :

Comprendre leur fonctionnement et en améliorer l'efficacité!

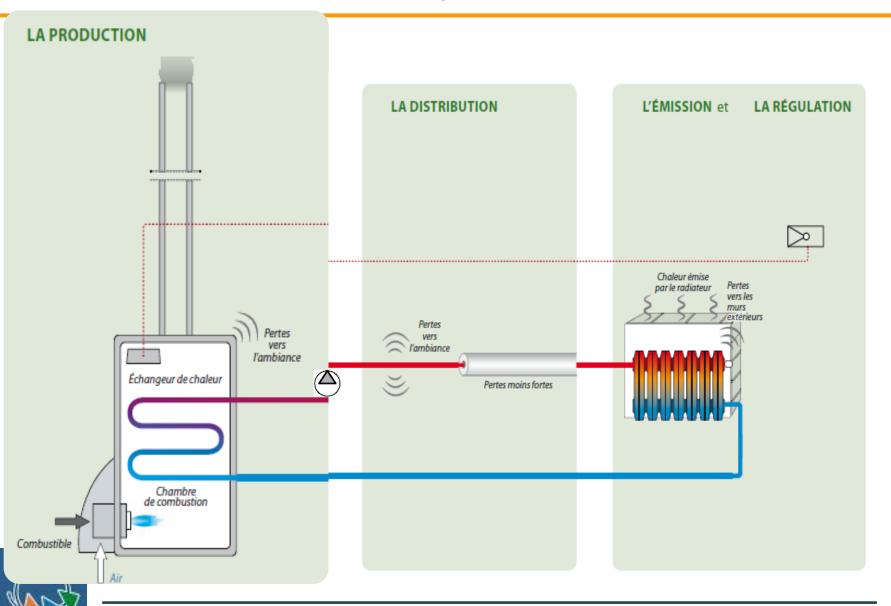
Pierre DEMESMAECKER



Pourquoi faut-il chauffer?



Pourquoi faut-il chauffer?



Les flux thermiques d'un bâtiment

L'installation de chauffage central

Approfondis durant les journées « audit live »

Objectifs de cette journée

- Comprendre le principe de fonctionnement d'une installation de chauffage <u>central existante avec chaudière</u>
- Afin de pouvoir en établir:
 - son diagnostic
 - les améliorations possibles

 - un regard critique sur sa rénovation
- Ne seront pas abordés :
 - Les moyens de production basés sur les énergies renouvelables (biomasse, pompes à chaleur, ...)
 - Les particularités des bâtiments à haute performances énergétiques (passifs & assimilés)

Plan de l'exposé

- Introduction
- La production
- La distribution
- L'émission
- La régulation
- Les auxiliaires
- Focus sur les installations à condensation
- Améliorer / rénover une chaufferie
- Conclusions

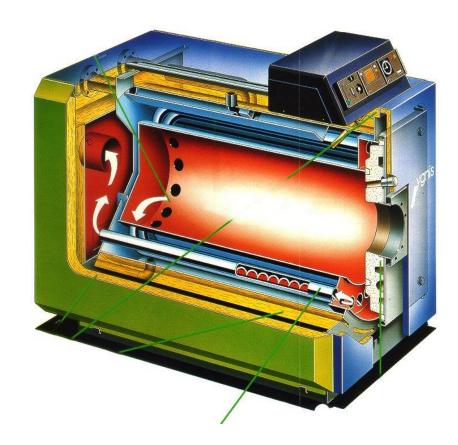
Plan de l'exposé

- Introduction
- La production
- La distribution
- L'émission
- La régulation
- Les auxiliaires
- Focus sur les installations à condensation
- Améliorer / rénover une chaufferie
- Conclusions

Chaudières: sommaire

- Notions théoriques
- Technologies existantes
- Comment agir sur une installation existante?
- Rendements des chaudières
- Labels & Normes

Chaudières: sommaire


Notions théoriques

- Chaudières ?
- La réaction de combustion
- Le pouvoir calorifique d'un combustible
- Introduction aux pertes dans les chaudières
- Technologies existantes
- Pertes de chaleur dans une chaudière
- Rendements des chaudières
- Labels & Normes
- Remplacement des chaudières existantes

Chaudière

• Chaudière ≅ échangeur de chaleur parcouru par un fluide caloporteur et équipé d'un foyer où a lieu la combustion d'un combustible (gaz, mazout, bois, etc)

Principe général:

- la flamme brûle dans un foyer
- tout autour de ce foyer, de l'eau capte la chaleur
- ensuite, les fumées passent dans des tubes (toujours entourés d'eau)
- puis ressortent à l'arrière.
- → l'eau rentre froide dans la chaudière puis ressort chaude!

Nos combustibles (fuel, gaz, bois,...) sont constitués de Carbone et d'Hydrogène.

Combustible + Oxygène → CO₂ + H₂O + Chaleur

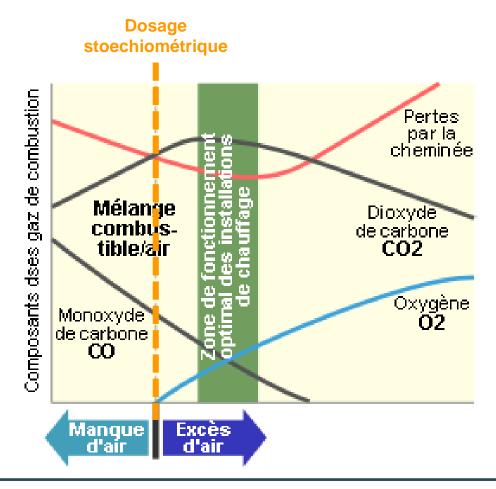
Par la combustion,

- le Carbone formera du CO₂
- l'Hydrogène formera ... de l'eau !

Cette eau est à l'état de vapeur, donc elle ne se voit pas... ... sauf lorsqu'elle condense et forme de la fumée blanche en sortie de cheminée.

Gaz: $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$

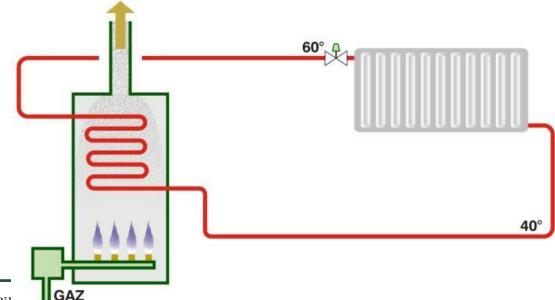
+ Chaleur


Autres: $C_xH_y + n O_2 \rightarrow x CO_2 + \frac{y}{2} H_2O$

- La combustion du mazout produit plus de CO₂ que celle du gaz
- En cas de mauvaise combustion : L'azote (N) contenu dans l'air se combine avec l'oxygène → NO_x
- Les traces de soufre contenues dans le combustible (mazout et charbon) forment SO_x (→ pluies/condensats acides)

Quels paramètres pour une bonne combustion?

L'excès d'air!

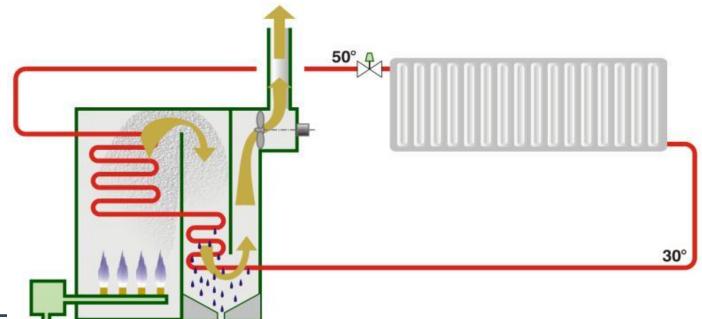


• Quid de la vapeur d'eau ?

Pour les « anciennes » chaudières :

Si l'eau en contact avec le foyer est froide, les vapeurs d'eau dans les fumées condensent dans la chaudière...

Si la chaudière n'a pas été conçue pour résister à ces condensats, il y aura corrosion et destruction de la chaudière...



• Quid de la vapeur d'eau ?

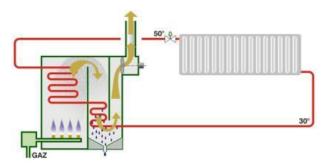
Aujourd'hui:

La chaudière recherche la condensation : Les vapeurs condensent volontairement

- → les fumées sortent plus froides
- → le rendement est plus élevé!

Pouvoir calorifique d'un combustible

• Quid de la vapeur d'eau ?


Avant:

Chaleur captée par l'eau des radiateurs:

10 kWh pour 1 m³ de gaz brûlé.

C'est le **PCI**, Pouvoir Calorifique Inférieur, du gaz

Aujourd'hui:

Chaleur captée par l'eau des radiateurs:

11 kWh pour 1 m³ de gaz brûlé.

C'est le **PCS**, Pouvoir Calorifique Supérieur, du gaz

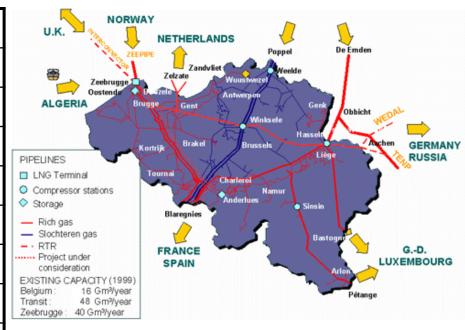
Remarque : si la chaudière fournit 10,3 kWh en brûlant 1 m³ de gaz,

- Le vendeur dira : elle a un rendement de 103 % (= 10,3/10) = rendement sur PCI
- L'ingénieur dira : elle a un rendement de 94 % (= 10,3/11) = rendement sur PCS

Pouvoir calorifique d'un combustible

Extrait d'un catalogue de fabricant de chaudière :

Caractéristiques techniques


Puissance nominale			
pour une température d'eau primaire de 80/60 °C	kW	285	370
pour une température d'eau primaire de 70/50 °C	kW	295	383
pour une température d'eau primaire de 40/30 °C	kW	314	408
Rendement à charge nominale			
pour une température d'eau primaire de 80/60 °C	%	96,8	96,8
pour une température d'eau primaire de 70/50 °C	%	100,2	100,2
pour une température d'eau primaire de 40/30 °C	%	106	106

La chaudière à condensation n'aura un bon rendement que si on lui envoie de l'eau froide!

Pouvoir calorifique inférieur

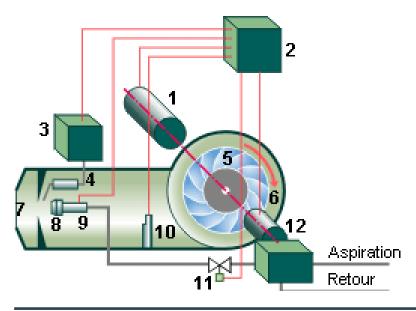
Le Pouvoir calorifique inférieur (PCI) des différents combustibles

Gaz naturel H (Algérien)	10.8	[kWh/m³]
Gaz naturel L (Slochteren)	9.3	[kWh/m³]
Propane	12.8	[kWh/kg]
Butane	12.6	[kWh/kg]
Mazout	10.0	[kWh/l]
Charbon	8.6	[kWh/kg]
Pellets (bois)	4.9	[kWh/kg]
Copeaux de bois	3.0	[kWh/kg]
Bûches, sèches	4.2	[kWh/kg]
Bûches, humides	2.5	[kWh/kg]

Chaudières: sommaire

- Notions théoriques
- Technologies existantes
 - Chaudières à brûleur pulsé et brûleurs
 - Chaudières gaz atmosphériques
 - Chaudières étanches
 - Chaudières basse température
 - Chaudières à condensation
 - Cascades entre chaudières
- Pertes de chaleur dans une chaudière
- Rendements des chaudières
- Labels & normes

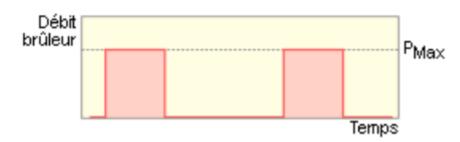
Chaudières à brûleur pulsé (gaz ou mazout)

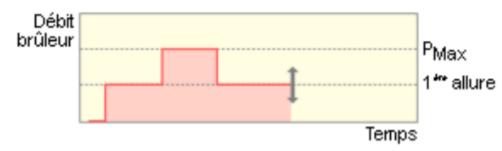

- Chaudières dites à <u>foyer pressurisé</u>
 (déplacement des fumées grâce à la pression du ventilateur)
- Le brûleur est choisi indépendamment de la chaudière

Avantages	Inconvénients
 Faibles pertes à l'arrêt Rendement de combustion élevé si le brûleur est bien réglé 94-95% Rendements améliorés si brûleur à 2 allures ou modulant → Les + performantes parmi les chaudières « traditionnelles » 	 Plus difficile à régler Bruit Coûts d'installation

Brûleur pulsé mazout

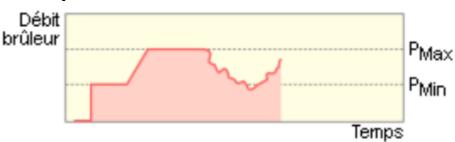
Brûleur mazout à air pulsé :


- 1. moteur,
- 2. boîte de contrôle,
- 3. transformateur,
- 4. électrodes,
- 5. ventilateur,
- 6. volute,
- 7. déflecteur,
- 8. gicleur,
- 9. réchauffeur,
- 10. cellule photosensible,
- 11. électrovanne,
- 12. pompe et régulateur de pression


Modes de fonctionnement des brûleurs pulsés

3 modes de fonctionnement :

Brûleur 1 allure (tout ou rien)

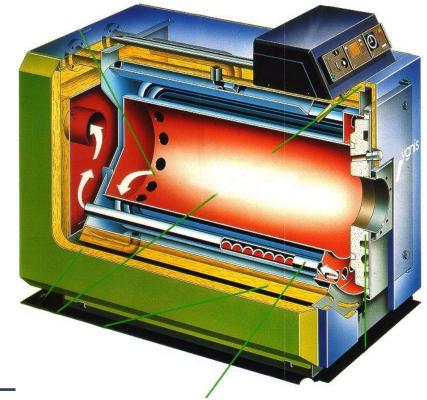


Brûleur 2 allures (petite et grande flamme)

• Brûleur modulant (flamme variable)

Brûleur pulsé

Quel est l'intérêt d'avoir plusieurs allures ?


Si on a une petite flamme dans un grand échangeur, les fumées seront plus froides en sortie de chaudière

→ Meilleur rendement!

Enjeu énergétique

2.. 3 % de rendement de combustion en plus!

2 à 3 % de consommation en moins!

Tel: 081 250 480 | Fax: 081 250 490

Brûleurs à 2 allures

Potentiel d'économies ?

2 % de rendement de combustion en plus

≈ 2 % de consommation en moins !

Exemple : chaudière qui a un rendement de 90% en grande allure et qui consomme 350 000 kWh x 0,06 €/kWh = 21000 €/an.

2 % d'économies : 0,02 x 21 000 = 420 € / an... en tournant 1 bouton (il faut tourner le bon !)

Brûleurs à 2 allures

Comment les allures sont-elles commandées ?

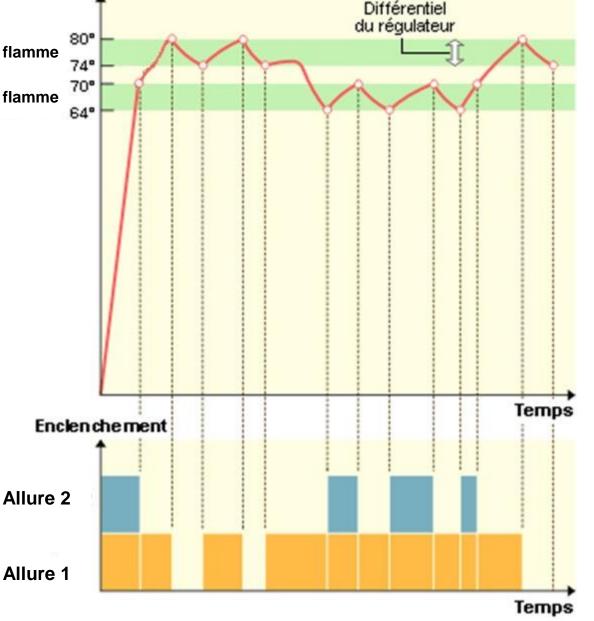
Via des aquastats

→ Comment régler correctement ces aquastats?

Améliorer une chaufferie existante

 Vérifier si la fiche alimentant la petite allure du brûleur est bien câblée et branchée

> Broche verte non câblée...

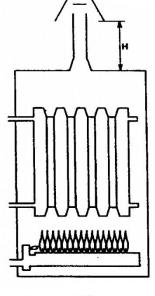

Consigne allure 1 = petite allure = petite flamme

Température de l'eau

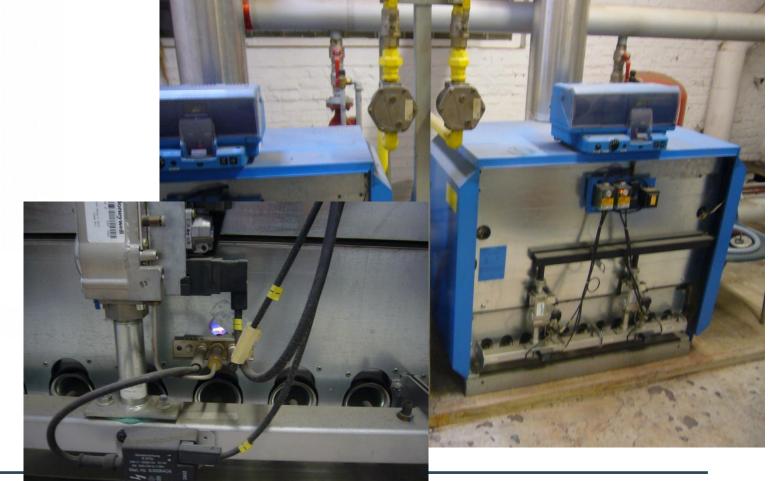
Consigne allure 2 = grande allure = grande flamme

Une chaudière à deux allures:
ordre
d'enclenchement des allures d'un brûleur
... pour une régulation basée sur des aquastats

T° aquastat petite allure >
T°aquastat grande allure!
(sinon, fonctionnement
permanent en grande allure)

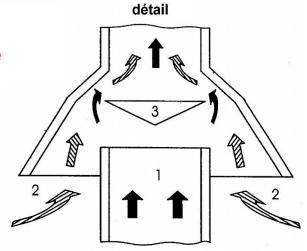

Chaudières: sommaire

Notions théoriques


- Technologies existantes
 - Chaudières à brûleur pulsé et brûleurs
 - Chaudières gaz atmosphériques
 - Chaudières étanches
 - Chaudières basse température
 - Chaudières à condensation
 - Cascades entre chaudières
- Pertes de chaleur dans une chaudière
- Rendements des chaudières
- Labels & normes

coupe-tirage/registre coupe-feu

chaudière au gaz naturel



250 480 | Fax : 081 250 490

Coupe-tirage

- 1. produits de combustion
- 2. air ambiant
- 3. coupe-tirage conique

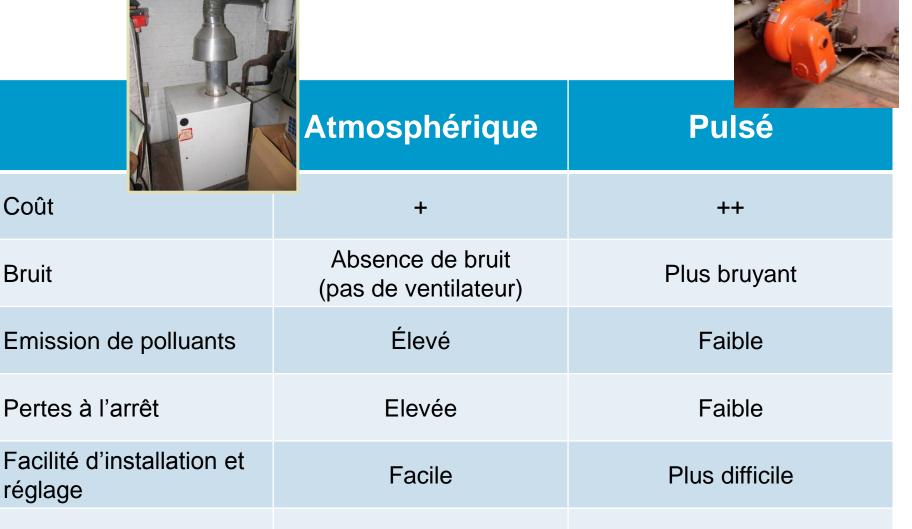
- Caractéristiques :
 - Technologie constructive simple
 - La combustion se fait à la pression atmosphérique
 - Foyer ouvert sur l'ambiance
 - Brûleur = rampe gaz intégrée dans la chaudière
 - Pas de ventilateur sur le brûleur → Pas de bruit (parfois un ventilateur d'évacuation des fumées)
 - Présence d'un coupe tirage (parfois visible sous la forme conique)
 - Allumage par veilleuse pour les anciennes chaudières
 Allumage électronique pour les chaudières actuelles

- <u>Caractéristiques</u> (suite) :
 - Pas de réglage possible de la combustion (réglage d'usine). Pas de mesure de combustion possible.
 - Rendement de combustion parfois médiocre (excès d'air non maitrisé)
 - Pertes à l'arrêt plus importantes (foyer ouvert en permanence)
 - Production d'NO_x plus importante.

$$\eta_{comb} = 85 \dots 91\%$$

• Détermination du rendement de combustion

$$\eta_{comb} = 60,7/67,3 = 90 \%$$


 $\eta_{combustion courants} = 85 \dots 91\%$

Brûleur atmosphérique vs pulsé

Coût

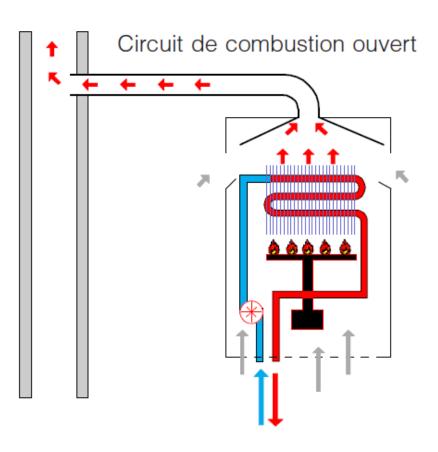
Bruit

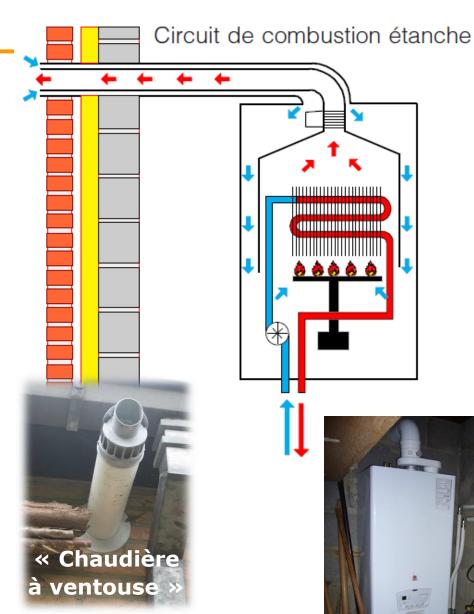
Rendement saisonnier

Bon (86...93%)

Médiocre (75...91%)

Chaudières: sommaire


Notions théoriques


- Technologies existantes
 - Chaudières à brûleur pulsé et brûleurs
 - Chaudières gaz atmosphériques
 - Chaudières étanches
 - Chaudières basse température
 - Chaudières à condensation
 - Cascades entre chaudières
- Pertes de chaleur dans une chaudière
- Rendements des chaudières
- Labels & normes

Production

Chaudières étanches

I.C.E.D.D. a.s.b.l. 4, Boulevard Frère Orban | 5000 Namur Tel : 081 250 480 | Fax : 081 250 490

Chaudières étanches

Avantages :

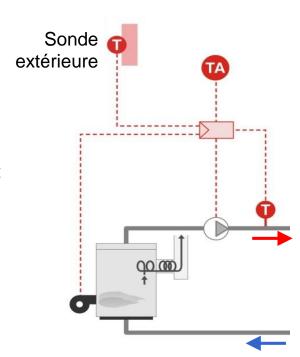
- Meilleure sécurité si prise d'air extérieure (limite les risques de mauvaise combustion et de production de CO toxique)
- Meilleur contrôle de l'excès d'air
- Possibilité de modulation de puissance

- → rendement de combustion parfois amélioré
- → pertes à l'arrêt réduites

Chaudières: sommaire

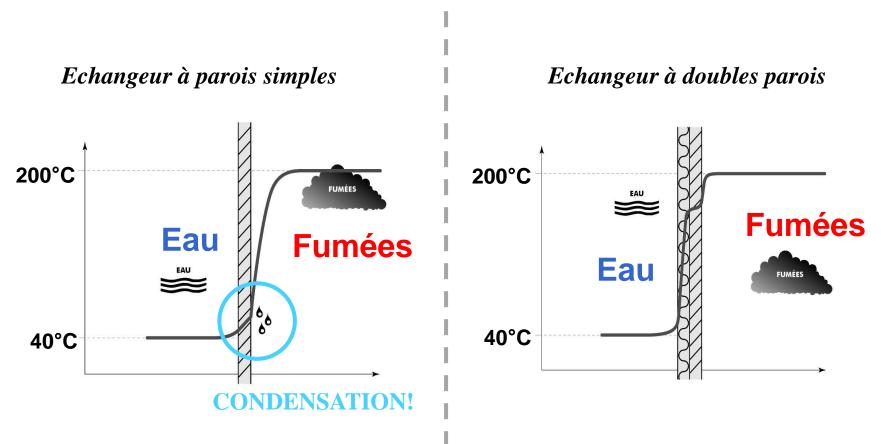
Notions théoriques

- Technologies existantes
 - Chaudières à brûleur pulsé et brûleurs
 - Chaudières gaz atmosphériques
 - Chaudières étanches
 - Chaudières basse température
 - Chaudières à condensation
 - Cascades entre chaudières
- Pertes de chaleur dans une chaudière
- Rendements des chaudières
- Labels & normes



Chaudières (très) basse T° (mazout ou gaz)

- Chaudière traditionnelle « Basse température » : température moyenne d'eau > 50...60 °C = contrainte
- Chaudière traditionnelle « Très basse température » : aucune contrainte pour la température d'eau


Intérêts:

- Diminuer les pertes :
 - Dans la chaufferie (chaudières en fonctionnement et à l'arrêt)
 - Via les conduites de distribution

Chaudières très basse T° (mazout ou gaz)

Echangeur de chaleur conçu pour que

T_{paroi} côté fumée > point de rosée (.. 45°C .. pour le fuel et .. 55°C .. pour le gaz)

Chaudières très basse T° (mazout ou gaz)

• Conclusion :

- On isole pour freiner l'échange ...
 ... le comble pour un échangeur !
- Technologie uniquement intéressante pour pouvoir réguler la chaudière en T° glissante sans risquer de condenser dans la chaudière.

→ Ces chaudières ne sont pas prévues pour condenser : s'il y a condensation, il y a risque de corrosion de la chaudière !

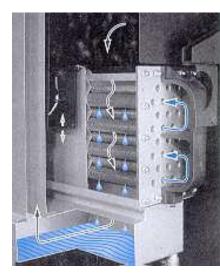
Chaudières: sommaire

Notions théoriques

- Technologies existantes
 - Chaudières à brûleur pulsé et brûleurs
 - Chaudières gaz atmosphériques
 - Chaudières étanches
 - Chaudières basse température
 - Chaudières à condensation
 - Cascades entre chaudières
- Pertes de chaleur dans une chaudière
- Rendements des chaudières
- Labels & normes

Chaudières à condensation

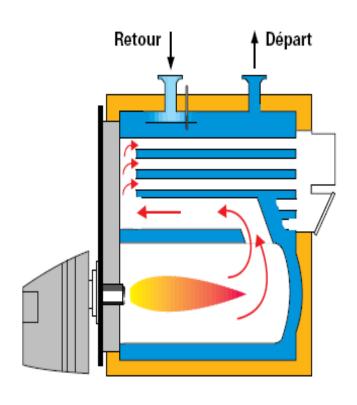
Principe :

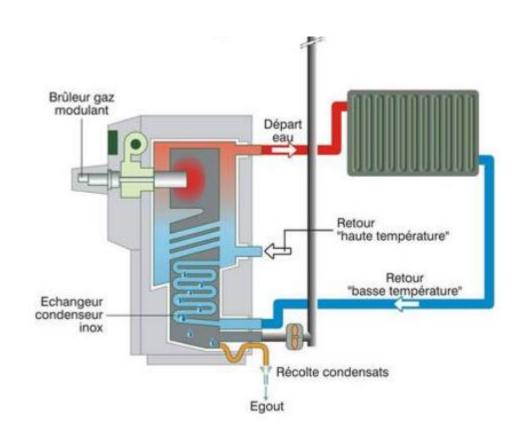

 refroidir les fumées jusqu'à récupérer la chaleur de vaporisation de l'eau contenue dans les fumées

Intérêts :

- Rendement de combustion excellent
- Encore diminuer les pertes à l'arrêt
- → Rendement saisonnier de production : 97 ... 105%
- Gain énergétique potentiel sur la consommation annuelle :

de 8% par rapport à une bonne chaudière à brûleur pulsé... à 20% par rapport à une mauvaise chaudière atmosphérique




Chaudière Basse T° vs À condensation

Chaudière (très) basse température

 $T_{\text{fumées}} \sim 120^{\circ} \text{C}$

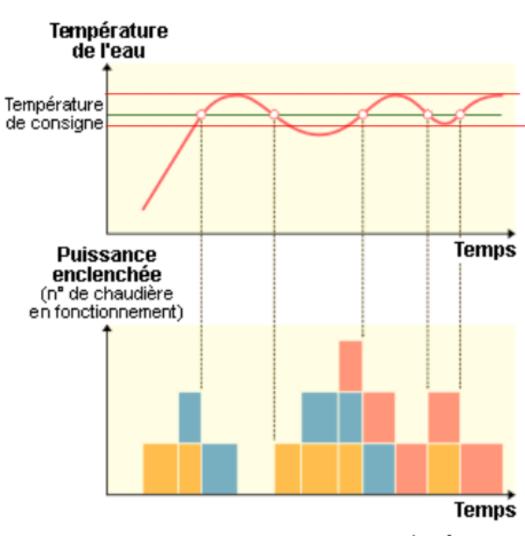
ICEDD

Chaudière à condensation

 $T_{\text{fumées}} \sim T_{\text{eau retour}} + 5 \text{ à } 10^{\circ}\text{C}$

Chaudières: sommaire

Notions théoriques


- Technologies existantes
 - Chaudières à brûleur pulsé et brûleurs
 - Chaudières gaz atmosphériques
 - Chaudières étanches
 - Chaudières basse température
 - Chaudières à condensation
 - Cascades entre chaudières
- Pertes de chaleur dans une chaudière
- Rendements des chaudières
- Labels & normes

Cascade entre chaudières

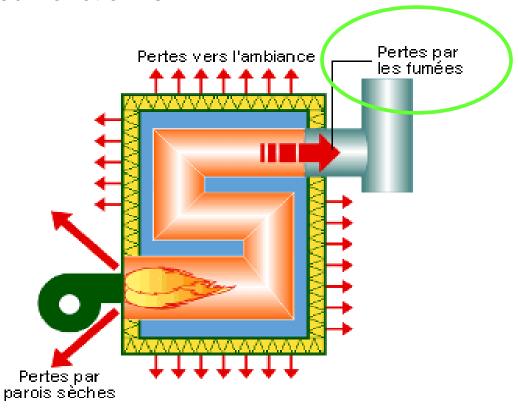
Principe:

Mise en service d'une ou de plusieurs chaudières en fonction des besoins de chauffage

: fonctionnement de la chaudière 1

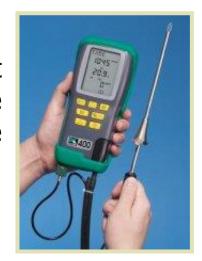
: fonctionnement de la chaudière 2

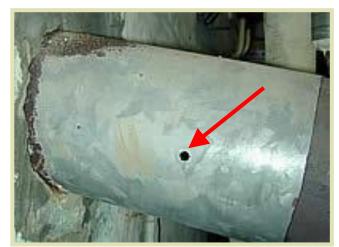
: fonctionnement de la chaudière 3


Chaudières: sommaire

- Notions théoriques
- Technologies existantes
- Pertes de chaleur dans une chaudière
 - Pertes en fonctionnement
 - Pertes à l'arrêt
- Rendements des chaudières
- Labels & normes

Pertes dans une chaudière


Quand le brûleur fonctionne :



Evaluer les paramètres de combustion

Sur une chaudière à brûleur pulsé, les pertes par les fumées sont mesurées à l'aide d'un analyseur de combustion électronique

Orifice dans la buse de raccordement à la cheminée pour la mesure du rendement de combustion

Attestation de contrôle périodique

ATTESTATION DE CONTRÔLE/ENTRETIEN D'UN GÉNÉRATEUR DE CHALEUR - COMBUSTIBLE GAZEUX/LIQUIDE BRÛLEUR UNE ALLURE/DEUX ALLURES - RÉGION BRUXELLES/WALLONNE

ENTREPRISE		100	VÉRIFICATION DE LA CHA	uméne e	MALIETTE				ou I	NON	SAMS	E ET
			tat gánátai de la chaudií					\rightarrow	w	mom.	OMMO	DAE I
Nom:			modulation de pulsya	No.	orawr	alle aver aut		_			-	
Rue et numéro:			modulation de puisse dispesitifs de la la fai e	de la che i	amora repons	418 110 00	gences? (Ras	9	-		<u> </u>	_
Code postal & localité:		Les	i dispesitira del la mare dillo do maria procenta?	som-is en o	NUMBER Mineral and the	la Ana Mar da		-	-	_	•	_
Täl:				pai mon, et a s	i issument de	is tea ille de	nostej (REC)	_				
Courriet			NF HES (S)									•
W° Entreprise:			M TEO (3)	Umito	Application	Manager	Biolog ann	Monor	es fingles	Edgeness	Conf	-11
		 ' ₩		UNIEW	Approve		Alture 2		Altura 20	COUNTRAC	OK.	
PERSONNE RESPONSABLE DE L'INSTALLATION	TECHNIQUE			l		ALBIN 1	Allury 2	ABUSE 1	Altura 2º		106.	Mon OK
Nom de la personne:		Ten	npérature d'eau (4)	°C	1-2			-	-		-	$\overline{}$
Entreprise (si pertinent)			lest marges/face	7	1				-			
Rue et numéro:		Get	iver dilbit	USAN	1					1		
Code postal - commune:		Get	ivez sagle		1					1		
Tel:	E	Per	sdos pomes	bar	1				-	1		
		PRO	sdon gaz	nter	2				-	1		
Courriet Localisation du générateur si différente:			g motion claim são	- Pa	1-2				_			f
Locassación du generaleur si omerente:			ès femés	Backsrach	1				_		+	_
TYPE DE TRAVAUX			our on O.	8	1.2				_		+	_
RÉGION BRUCELLES	RÉGION WALLONNE		eur ee CO.	8	1-2				_		+	
□ Notioyage et vörffication de système d'évacuation	Contrib périodosa		euree 00	rulii)	1-2	_		_	+	_	+	_
Nettoyage et vernostrin de systeme d'exaculation Nettoyage et vérification de système de la chaudière	☐ contribi pariotiqua ☐ 1º contribi da misa en conformitá		n, dus cast de combustion	40	1-2	-		-	-		_	-
Nettoyage rampe du brûleur atmosphärique	2 2 contri la de misa en conformité		ng.de l'air de combestion	°C	1-2	_		-	-	1		
□ Nettoyaga brillaur à air puisi	contribe an way d'une rambs en fonctionsement		mpérahus softs	°C	1-2	_		_	-		$\overline{}$	_
,, ,			demant de combestice	8	1-2	_		-	-	_	+	Н
COMBUSTIBLE (si multi combustible, mention	ner les différents combustibles)		Restins = 1; combestible i									_
	Fuel burd Artre:		Schafs dus nisu llats du m									_
☐ Gazerue: ☐ Gaz matural ☐ Programa ☐	Batana 🗆 Blogaz 🗆 Antre:											
			TTERTION: Si un brilleur à : mage nomissie pour perme	2 mbunes se	pent être maie:	ianu pentant sistet	an temps set	Buaranest I	long sur is (in	e) brasersocele)	arenese.	19 1
CHAUDIÈRE	BRÜLEUR	11									_	
Nà de pândrotsurs dans le local de chauffe:	🗆 strasphérique 🗆 à pir pubé ésépasable 🗆 prom		OCAL DE CHAUFFE – AM		R - ÉVACUATIO	NIDES BAZI	DE COMBUS	TION (S)	OUI	NON	SANS	₽JE
identification du générateur (si plusiours):	□1 allure □ 2 ellures □ mode		onité de la verifiation									
Montd en : D B D C			nfor 👋 de la werfilation									7
Type unit: D Oul D Non	Si d'application	Con	nformia. dispositif d'A	waruation d	des gaz de co	nbestion?						
Plaque signalifique: présent/absort	Flaque signalétique: □ présent □ abse	- Princ	sonce snorma. 😉 conde									
Marque Type	Marque: Type:		cas de non-confor-	 causes d 	te non-conton	nitá et actio	ns à ortrepr	endre:				_
Pulsoance nominale utille (MW-look/h):	Döbit:(kg/h cu l/h cu n											
Annile de tabrication(1):	Année de fabrication(1):											
Générataur à condensation: 🗆 Cei 🗆 Non												_
	<u>'</u>		CLARATION DE CONFOR									
INSTALLATION DE CHAUFFAGE CENTRAL			nsemble générateur de			- dispositif	die ventifistio	n - disposi	III d'évacuat	don des gaz d	ia combi	stilor
Fluide Caloportaur: 🗆 Eas 🗆 Vapeerbæy			conforme à la législatio									
Production chalaur: 🗆 Chartinge 🗆 ECS	□ Chauflage + ECS		OUL Remarques									
			NOM: Pamarques									
INTRODUCTION DE LA DEMANDE INITIALE DE P												
RÉGION ERUXELLES	RÉGION WALLONNE	—II≡										=
☐ Arest to 1/01/2011	□ Anant is 29/05/2009		OCHAINES INTERVENT	UM (7)		-	nda					
□ Aprilis le 1/01/2011	□ Agr6s to 29/05/2009		RÉGION BRUCELLES ☐ Prochain contrata páriodique consolité à séaliser su ples				RÉGION WALLOAME Di de contrôle périodique réglementaire à régêser				_	
Réponse à la question précédente déciatio:						an bjare				ntuha i säalis		
🗆 De l'estimation de l'âge du bâllment sur base de son obse		- 11 ⊢	tard la									
D'Informations craies transmises par l'utilisation / le propr			De mise en conformité :	realiser do	an les 5 mais i	dater				de mêse en co	nfirmik	ш
🗆 De la présentation de la domande initiale de permis d'urbs	informe ou du permis d'urbanisme par l'attitasteur/le proprié	taire C	de cette attestation					lk:				
		=11					☐ de conta	ôle an vua	d'una samis	e en fanctions	rement	
CONTRÔLES								ise en conf				
1. ORIFICES DE MESURE(2)							□ d'entreti	an (consall	M) au plus to	and le		
La gánársteur est-li dispensá da l'obligation d'iltre áquipé d'o	riffices de mesure? 🗆 001 🗆 NON	11=						to constant?	-14-0			=
Si ráponse = « MOM » (= doit átre équipé d'orifices)			astation de contrôle pé d						përiod ique n			
☐ Présent et conforme			n:									
			ection: 🗆 Technician agr				Qualité:					
☐ Präsent et nen conforme						- 1						
□ Présent et non conforme □ Absent et techniquement non séalisable		Nº	d'agrément									_
Prissent et nen conforme Absent et techniquement nen stellsable Remangue – Casse de nen conformité:		Sg	a sgromone natura:				Signature:					
Prisset et nen conforme Absort et techniquement nun skellsable		Sig	mature:				Signature:					

Vérifier la complétude et les valeurs indiquées sur les attestations d'entretien!

- Date
- Débit du gicleur [gal/h]
- Pression de la pompe [bar]
- Dépression cheminée [Pa]
- Emission de suie mesurée [Bacharach]
- Teneur en CO₂ [%]
- T° cheminée et ambiante [°C]
- Rendement de combustion [%]

Production

	Unité	Application	Mesures initiales (RBC)		Mesures	s finales	Exigences	Conformité	
			Allure 1	Allure 2	Allure 1	Allure 2 ^(*)	<u> </u>	OK	Non OK
Température d'eau (4)	°C	1-2			74	74			
Gicleur: marque/type	/	1			Danfoss/S	Danfoss/\$			
Gicleur: débit	USG/h	1			4,5	3,0			
Gicleur: angle	0	1			60	60			
Pression pompe	bar	1			14	14			
Pression gaz	mbar	2							
(dé)pression cheminée	Pa	1-2		-	16	16			
Indice fumée	Bacharach	1			0	0			
Teneur en 0 ₂	%	1-2			3,8	3,9			
Teneur en CO ₂	%	1-2			12,6	12,5			
Teneur en CO	mg/kWh	1-2		-	10	16			
Tem. des gaz de combustion	°C	1-2			143,1	185,4			
Temp.de l'air de combustion	°C	1-2			25,2	25,2			
Température nette	°C	1-2			117,9	160,2			
Rendement de combustion	%	1-2			94,5	92,6			

Application = 1: combustible liquide – 2: combustible gazeux

ICEDD

Les tickets des résultats de mesure sont à agrafer à cette attestation

(*) ATTENTION: Si un brûleur à 2 allures ne peut être maintenu pendant un temps suffisamment long sur la (les) puissance(s) inférieure(s) à la puissance nominale pour permettre la mesure, mettre une croix ici □ et effectuer uniquement la mesure à la puissance nominale.

Réglage d'un brûleur

• Valeurs cibles pour les paramètres de combustion présents sur

l'attestation d'entretien	Ancienne Chaudière 20 cs de 25 de	Nouvelle Choudière Conconsi	John Salion
T° fumées	~ 180	~ 120	°C
Taux CO2 mazout	12,5 13	12,5 13	%
Taux CO2 gaz	10 11	10 11	%
Taux CO	0	0	ppm
Excès d'air	~ 20	~ 20	%
Tirage	~ 10 15	~ 10 15	Pa
Rendement	~ 90 92	~ 94 95	%

→ En dessous de 88 %, le rendement de combustion doit être considéré comme inacceptable et une amélioration doit être apportée.

Réglage d'un brûleur

Principales causes d'un mauvais rendement :

Rendement de combustion = 100 - f x (Tfumée - Tambiante) / %CO2

Il y a problème si :

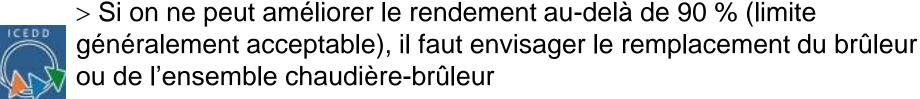
- % CO2 < 12 .. 13 en fuel, 9 .. 10 % en gaz
 - Entrées d'air parasites ?
 - Mauvais réglage ? Excès d'air trop important ?
- température de fumée > 200°C
 - Encrassement (Bacharach >1, CO > 75 ppm) ?
 - Propreté de la chaufferie ?
 - Mauvais tirage (>20 Pa; <10 Pa) ?</p>
 - Régulateur de tirage ?
 - Ventilation de la chaufferie ?
 (1 .. 1,5 dm² / 17,5 kW)

Tel: 081 250 480 | Fax: 081 250 490

Réglage d'un brûleur

• Enjeu énergétique :

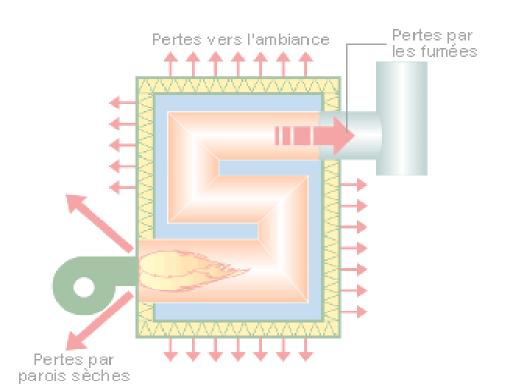
1 % de rendement de combustion en plus

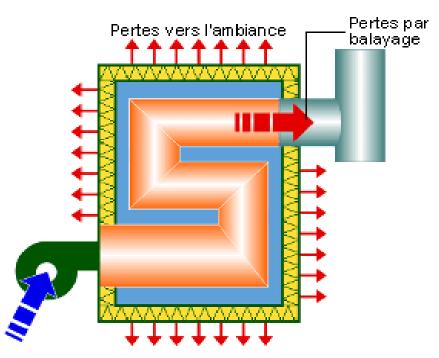

≈ 1 % de consommation en moins!

Exemple : chaudière qui a un rendement de 90% et qui consomme $350\ 000\ kWh \times 0.06\ €/kWh = 21000\ €/an.$

Si le rendement est peu performant, dans certains cas, un meilleur réglage semble être possible

⇒ Interroger le chauffagiste sur la faisabilité d'affiner le réglage


Si rendement amélioré à 91% : 350000 x (1 – 90/91) = 3850 kWh économisés soit 3850 x 0,06 = 230 €/an



Pertes dans une chaudière

Quand le brûleur fonctionne :

Quand le brûleur est à l'arrêt :

Pertes à l'arrêt

Pertes à l'arrêt = α_e . Puissance chaudière . Temps d'arrêt

α_{e} :

- Isolation de la jaquette (~âge)
- Localisation de la chaudière (T° amb.)
- Ouverture du foyer
 à l'arrêt du brûleur
 (clapet d'air)
- T° de l'eau (régulation)

Puissance chaudière et temps d'arrêt :

 surdimensionnement de la chaudière (et brûleur)

Agir sur les pertes par balayage → clapet d'air du brûleur

Les pertes par balayage sont réduites lorsqu'un **clapet d'air** est présent et se ferme automatiquement lorsque le brûleur s'arrête.

Agir sur les pertes par balayage

→ clapet d'air du brûleur

- > Aujourd'hui pratiquement tous les brûleurs rencontrés sur le terrain disposent d'un volet d'admission d'air motorisé (datant après 1985)
- > Dans certains cas, on constate qu'il ne se referme pas à l'arrêt (souvent la raison d'un mauvais câblage électrique ou parfois d'un problème mécanique)
 - ⇒ Un courant d'air permanent refroidit la chaudière lorsqu'à l'arrêt

• Enjeu énergétique :

0,5 à 1 % de la puissance nominale de la chaudière

Exemple : chaudière de 500 kW : 0,0075 x 500 kW = 3,75 kW

Durée de saison de chauffe : 5800 heures

Agir sur le temps de fonctionnement

- → Bon dimensionnement
- Une installation correctement dimensionnée devrait fonctionner ~1/3 de la saison de chauffe, soit entre 1200 et 2000 h/an
- Pourquoi 1/3 ?

 - T° int. de dimensionnement ~ 20°C - T° ext. de dimensionnement ~ -10°C $\Delta T = 30$ °C

Temps de fonctionnement du brûleur [h] =
Consommation [kWh/an] / Puissance brûleur [kW]

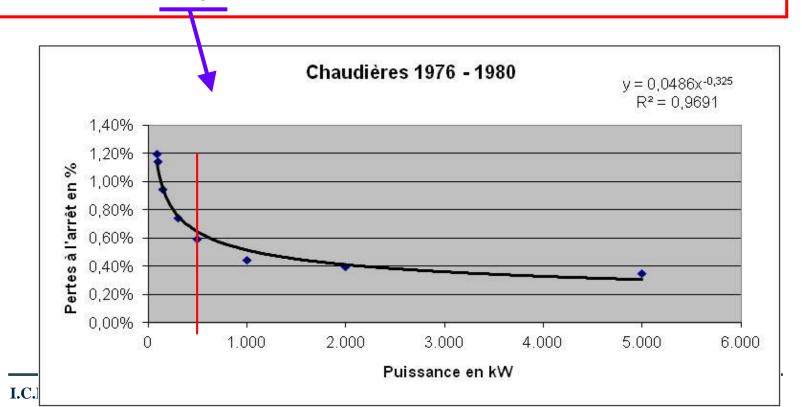
Agir sur le temps de fonctionnement

→ Bon dimensionnement

- Comment repérer un surdimensionnement de la chaudière ?
 - Temps de fonctionnement du brûleur < 4 min
 - Temps de fonctionnement annuel $< \sim 1000 \,$ h/an
- Impact du surdimensionnement des chaudières :
 - Augmentation des temps d'arrêt et donc des pertes à l'arrêt
 - Diminution du temps de fonctionnement du brûleur et augmentation des séquences de démarrage

En pratique:

surdimensionnement important récurrent



→ souvent possible de mettre 1 chaudière à l'arrêt sur 2

Pertes à l'arrêt

Exemple d'une chaudière de 500 kW de 1980 dont la consommation combustible s'élève à 350 000 kWh

Pertes à l'arrêt = α_e . Puissance chaudière . Temps d'arrêt

Pertes à l'arrêt

Exemple d'une chaudière de 500 kW de 1980 dont la consommation combustible s'élève à 350 000 kWh

Pertes à l'arrêt = α_e . Puissance chaudière . Temps d'arrêt

Temps de fonctionnement du brûleur $[h] = Consommation [kWh/an] / Puissance brûleur [kW] = <math>350\ 000\ /\ 500 = 700\ heures$

Temps d'arrêt = durée de la saison de chauffe – temps de fonctionnement = 5800 - 700 = 5100 heures

Pertes à l'arrêt = $0,006 \times 500 \times 5100 = 15300 \text{ kWh}$

Production – Chaudières : sommaire

- Notions théoriques
- Technologies existantes
- Pertes de chaleur dans une chaudière
- Rendements des chaudières
 - Terminologie
 - Evolution en fonction de la charge
 - Ordres de grandeur des rendements
- Labels & normes

Terminologie

Rendement de combustion

- = Rendement instantané (quand le brûleur fonctionne)
- = Image des pertes par les fumées
- = Rendement mesuré par le chauffagiste pendant l'entretien
- = Rendement repris sur la fiche d'entretien

Typiquement ~90% pour une chaudière de 1980

- Rendement saisonnier (= Rendement annuel de la production)
 - = (Cons. Pertes comb. Pertes arrêt) / Cons.
 - = rapport entre <u>l'énergie</u> transmise à l'eau sur l'ensemble de la saison de chauffe et la totalité de <u>l'énergie</u> fournie par le combustible

Calculé par outil Energie+;

pour exemple (chaudière 1980 de 500 kW): 86,7 %

Pour une chaudière standard ...

Le rendement saisonnier diminue :

- d'autant plus que la chaudière est surdimensionnée (longtemps à l'arrêt)
- d'autant plus vite que le facteur de perte à l'arrêt est important (chaudière mal isolée ou pertes par balayage)
- → Si le facteur de perte à l'arrêt est faible (chaudière récente), l'effet d'un surdimensionnement est peu important
- → Si le facteur de perte à l'arrêt est important (ancienne chaudière), le surdimensionnement de la chaudière dégrade fortement le rendement saisonnier

Rendement saisonnier : calcul ! (voir outils Energie+)

Comparaison des chaudières

 Ordre de grandeur des rendements de production saisonnier :

- Chaudières gaz atmosphériques :
- Chaudières fuel ou gaz à brûleur pulsé :
- Chaudières gaz à condensation:

mauvais échangeur régulation en température constante 80 .. 91 %

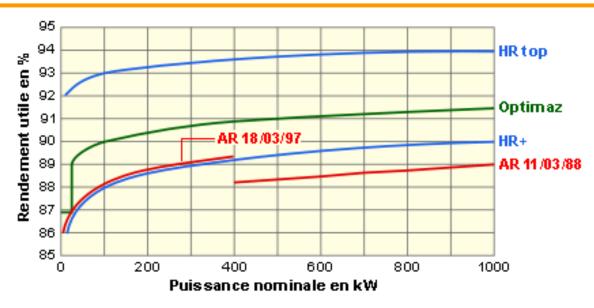
86 .. 93 %

97 .. 103 %

Bon échangeur régulation en température glissante

Chaudières: sommaire

- Notions théoriques
- Technologies existantes
- Pertes de chaleur dans une chaudière
- Rendements des chaudières
- Labels & Normes
 - Les labels
 - Apports d'air dans le local de chauffe


Les labels

	Gaz	Mazout				
Chaudières non à condensation	BGV-HR BGV-HR	Rationeel energiegebruik Utilisation rationnelle de l'énergie Proposition de l'énergie Coptimaz Coptima				
Chaudières à condensation	HR Top ≥ 1998	Optimaz Elite < 2005 Optimaz Elite ≥ 2005				

Les labels

Comparaison des exigences des différents labels avec les exigences réglementaires pour le rendement utile à pleine charge

- Label HR+ pas plus strict que les exigences règlementaires
- Label HR Top n'impose pas que la chaudière condense réellement
- Label Optimaz un peu plus exigeant mais encore peu sévère par rapport aux meilleurs équipements sur le marché
- → Les labels sont peu exigeants et ne permettent pas une comparaison des appareils entre-eux (pas de valeurs chiffrées). Néanmoins, ils offrent une garantie de contrôle du rendement par un organisme indépendant

Rendement à 30 % de charge

Rendement à charge partielle de 30%

Point de comparaison de la performance des chaudières

Exemples de documentations techniques → Chaudière gaz condensation

Type de chaudière	Calenta		15s	25s	28c	35s	40c
Généralités	- 227		00				
N° d'identification CE	PIN		ĺ		0063BT3444	2	
Réglage du débit	Réglable	ble Modulant,Marche/Arrêt, 0 - 10 V					
Plages de puissance (Pn) G20	min - max	kW	3,0 - 14,5	5,0 - 24,1	5,0 - 24,1	6,3 - 34,0	6,3 - 34,0
Régime Chauffage (80/60 °C)	Réglage d'usine	kW	14,5	24,1	19,4	34,0	23,3
Plages de puissance (Pn) G20	min - max	kW	3,4 - 15,8	5,6 - 25,5	5,6 - 25,5	7,0 - 35,9	7,0 - 35,9
Régime Chauffage (50/30 °C)	Réglage d'usine	kW	15,8	25,5	20,5	35,9	24,5
Plages de puissance (Pn) G20	min - max	kW	323	22	5,0 - 28,6	12	6,3 - 38,7
Régime ECS	Réglage d'usine	kW	88		28,6	-	38,7
Rendement chauffage à pleine charge (Hi) (80/60 °C)	: :::	%	96,5	96,3	96,3	96,9	96,9
Rendement chauffage à pleine charge (Hi) (50/30 °C)	5	%	105,3	102,0	102,0	102,2	102,2
Rendement chauffage à charge partielle (Hi) (Température de retour 60°C)	8	%	94,9	96,1	96,1	96,3	96,3
Rendement chauffage à charge partielle (EN 92/42) (Température de retour 30°C)	2	%	108,5	108,0	108,0	108,2	108,2

Apports d'air dans le local de chauffe

NORMES EN VIGUEUR:

- NBN B 61-002 (P<70 kW)
- **NBN B 61-001** (P > = 70 kW)

• Buts des exigences de ventilation :

- ✓ Apport d'air comburant pour les chaudières à circuit ouvert
- ✓ Eliminer les odeurs éventuelles
- ✓ Eviter que la température du local de chauffe excède 40°C

Apports d'air dans le local de chauffe

Ordre de grandeur de ventilation basse pour P>70kW

1 dm² par 17,5 kW, si la cheminée est plus haute que 6 m.

1,5 dm² par 17,5 kW, si la cheminée est moins haute que 6 m.

EXEMPLE :

Chaufferie de 500 kW : $500 / 17,5 \approx 28 \text{ dm}^2$ soit une ouverture de 40cm sur une largeur de 70 cm.

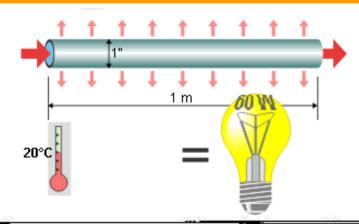
Plan de l'exposé

- Introduction
- La production
- La distribution
- L'émission
- La régulation
- Les auxiliaires
- Focus sur les installations à condensation
- Remplacer une chaudière / rénover une chaufferie
- Conclusions

Distribution

Isolation des conduites ?

Isolation des conduites ?

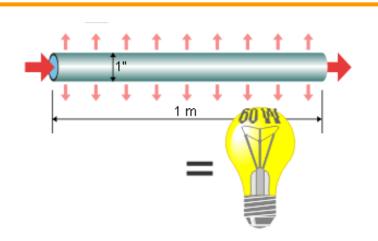


Pertes des conduites

Ordre de grandeur:

1 m de tuyau en acier non isolé de 1 pouce (DN25) avec de 1 'eau à 70 °C = 60 W

Perte de chaleur d'un tuyau en acier non isolé en [W/m]										
DN [mm]	10	15	20	25	32	40	50	62	80	100
Diam [pouce]	3/8"	1/2"	3/4"	1"	5/4"	1 1/2"	2"	2 1/2"	3"	4"
T _{eau} - T _{air} :	0.3	H- 100 1	0773399		0 4	· · · · · · · · · · · · · · · · · · ·	55540 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500		Marin y	
20°C	11	13	17	21	26	30	38	47	55	71
40°C	22	29	36	45	57	65	81	101	118	152
60°C	36	46	58	73	92	105	130	164	191	246
80°C	52	67	84	105	132	151	188	236	276	355
		11		H	I 3	1			4	II



Pertes des conduites

Ordre de grandeur :

1 m de tuyau en acier non isolé de 1 pouce (DN25) avec de 1 'eau à 70 °C = 60 W

Exemple:

100 m de conduite DN25 non isolée au plafond d'une cave représente : $100 \times 60 W = 6 \text{ kW}$

Soit sur la saison de chauffe : 5800 h x 6 kW = 34 800 kWh ou 34 800 x 0,06 = 2088 € !!

Pertes des conduites

Isoler les conduites dans les espaces chauffés?

Pour éviter les problèmes de surchauffe!

Particulièrement recommandés si :

- Irrigation continue même lorsque la VT est fermée
- Longueur ou diamètre de conduite important

Exemple:

10 x 4 m de conduite DN25 non isolée au plafond d'une cave représente : $40 \times 60 W = 2,4 \text{ kW}$

= puissance d'un radiateur, allumé en permanence!

Perte des vannes

Perte des vannes > pertes des tuyaux : 1 vanne ~= 1,7 m de conduite

Exemple: 1 vanne DN100 avec de l'eau à 80°C = 1,7 m de tuyau DN100 = 365 W de perte!

Isoler les vannes

Au moyen de matelas démontables

Isoler les accessoires

Choisir des circulateurs isolés au moyen de coquilles...

... et ne pas oublier de remettre les coquilles, après intervention!

Un TRÈS bon exemple !!!

Chaufferie industrielle de démonstration chez un fabriquant de chaudières

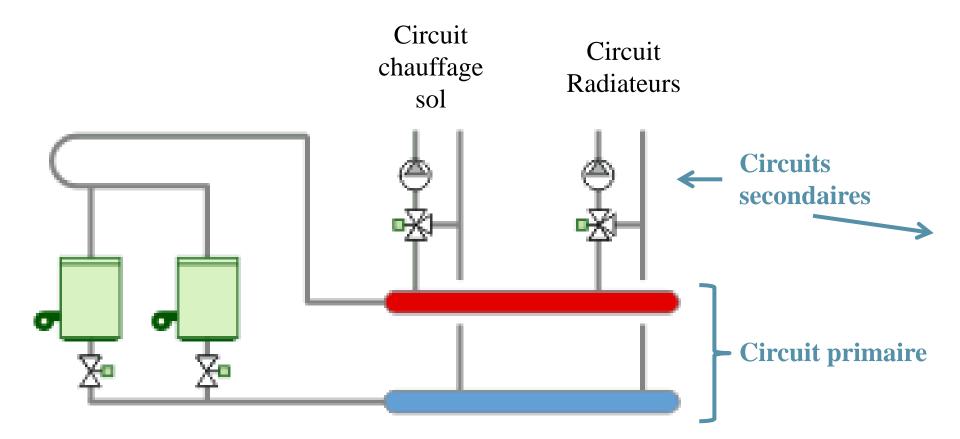
Isolation des conduites

Exemple: exigence de calorifugeage des conduite dans la réglementation PEB chauffage à Bruxelles

Tableau 9.2: Epaisseur d'isolant	selon la situation des conduits
----------------------------------	---------------------------------

Diamètre extérieur de la conduite en mm	Epaisseur de l'isolant après pose en mm							
	Extéri	eur du VP	Intérieur du VP					
	λ< 0,035	0,045≤λ≤0,035	λ< 0,035	0,045≤λ≤0,035				
de 20 à 24,9	13	23	11	19				
de 25 à 29,9	17	29	13	22				
de 30 à 39,9	22	35	16	26				
de 40 à 60,9	27	42	21	32				
de 61 à 89,9	35	54	25	37				
de 90 à 114,9	39	59	28	41				
de 115 à 159,9	42	62	32	46				
de 160 à 229,9	47	68	36	50				
de 230 à 329,9	49	70	38	53				
≥ 330	60	80	50	60				

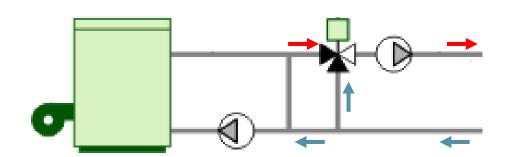
 $\lambda = 0.039$

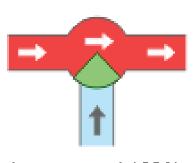


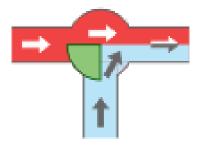
Réduire les pertes de distribution

- → Privilégier le placement des conduites de chauffage à l'intérieur du volume protégé
- → Isoler les conduites, coudes et vannes ...
 - ... situés dans le sol, à l'extérieur ou dans des espaces non chauffés
 - ... traversant des locaux desservis par un système de climatisation
 - ... passant à l'intérieur d'un volume protégé mais n'alimentant pas des émetteurs placés dans ce volume protégé
- → Diminuer la température de l'eau (régulation)

Diminuer la température de l'eau




Diminuer la température de l'eau

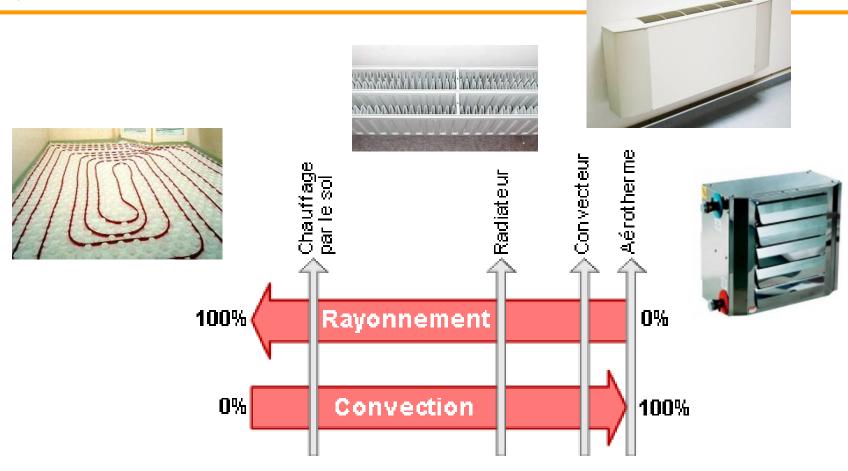


Vanne mélangeuse ou « 3 voies »

La vanne est 100% ouverte.

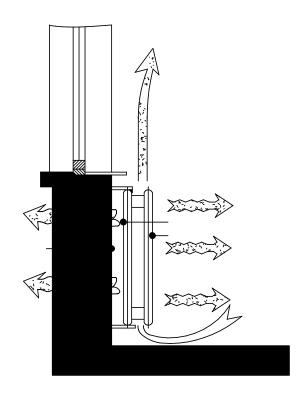
La vanne mélange 50% du débit de la chaudière et 50% du débit de retour des radiateurs.

La vanne est fermée ; l'eau des radiateurs tourne sur elle-même et se refrodit.

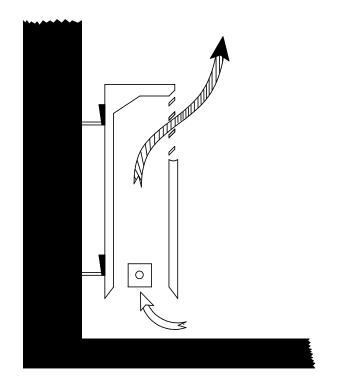


Plan de l'exposé

- Introduction
- La production
- La distribution
- L'émission
- La régulation
- Les auxiliaires
- Focus sur les installations à condensation
- Remplacer une chaudière / rénover une chaufferie
- Conclusions


Types d'émetteurs

Parts relatives du « rayonnement » et de la « convection » dans le mécanisme de transmission de chaleur pour différents systèmes d'émission

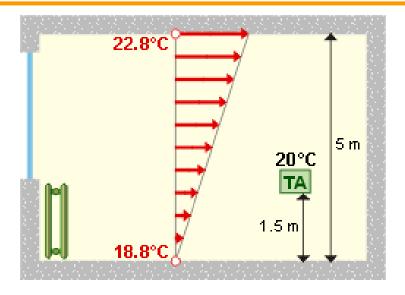

Radiateur et (ventilo-)convecteur

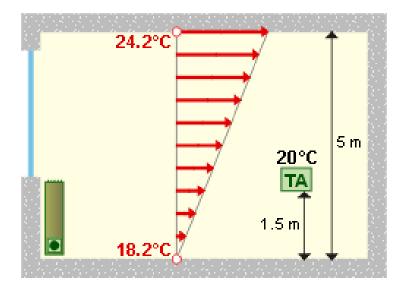
Radiateurs

à ailette : convection: 70%, rayonnement : 30 %

simples panneaux : convection : 50%, rayonnement : 50%

Systèmes convectifs

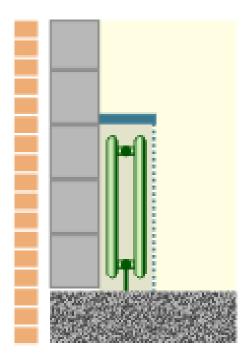

(100% convection)



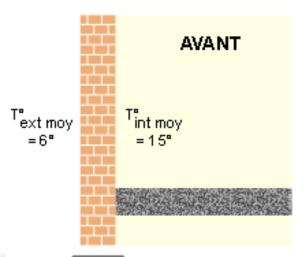
La stratification

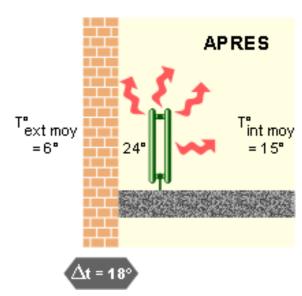
Les locaux ayant une hauteur importante favorisent le phénomène de stratification (si émetteur convectif)

- → pertes plus importantes
- → inconfort



Eviter d'entraver l'émission



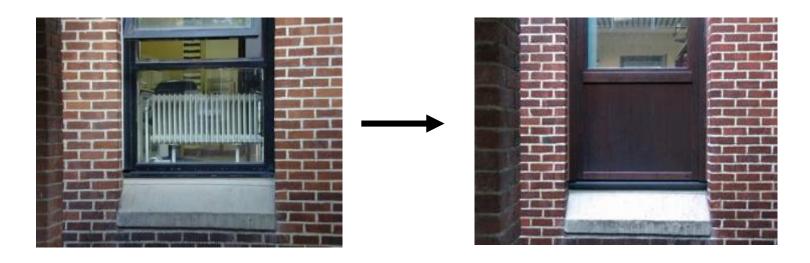

Caisson autour d'un radiateur

Pertes à l'émission

• Pertes au travers des parois au dos des radiateurs

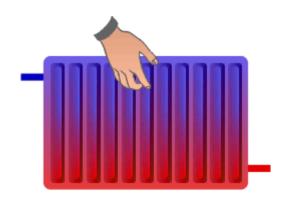
Placer un isolant de 0,5 cm recouvert d'aluminium sur un mur non isolé au dos d'un radiateur permet de gagner :

10 .. 15 litres fuel/m².an

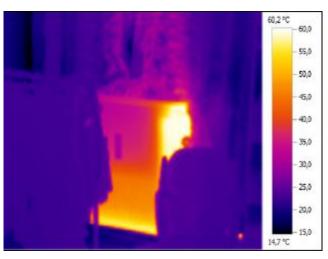

Et est remboursé en 1 .. 2 ans.

Pertes à l'émission

 Pertes au travers d'allèges vitrées au dos des radiateurs ou convecteurs

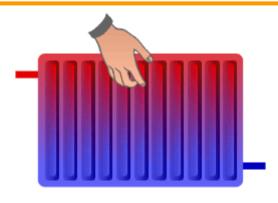

• A éviter!

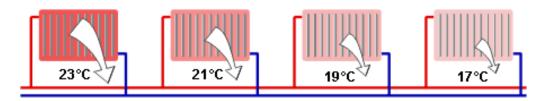
Emetteur devant une fenêtre



Dysfonctionnements

De l'air est présent dans le radiateur


 \rightarrow le purger



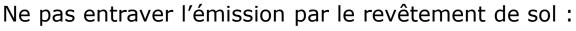
Dysfonctionnements

Déséquilibre hydraulique

Equilibrage:

Té de réglage du débit d'un radiateur

Corps de vanne thermostatique avec préréglage du débit


Plancher chauffant

Plancher chauffant

→ Intérêts :

- fonctionne à basse T° (rayonnement)
- T° air intérieur plus basse pour un même confort (pas de stratification des t°)
- → <u>Inconvénients</u> :
- forte inertie
- -> surchauffe
- -> régulation délicate
- -> intermittence difficile à gérer

→ Carrelage : idéal

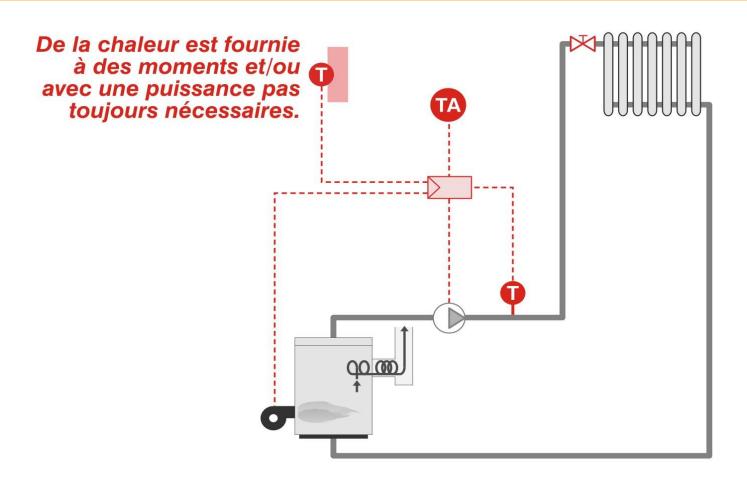
→ Parquet : envisageable sous certaines conditions

→ Moquette : à proscrire

Chauffage par air chaud

Chaleur transmise à l'air via une batterie de chauffe

- Température d'air pulsé limitée : jusqu'à 30 ... 40-45°C
- Capacité thermique de l'air faible
- => Débit volumique important :
 - Jusqu'à 5 ... 10 fois le débit nécessaire à la ventilation hygiénique (une grande partie de l'air peut être recyclée)
 - Consommation importante des ventilateurs
 - Encombrement des gaines



Plan de l'exposé

- Introduction
- La production
- La distribution
- L'émission
- La régulation
- Les auxiliaires
- Focus sur les installations à condensation
- Remplacer une chaudière / rénover une chaufferie
- Conclusions

Régulation

OBJECTIF: piloter l'installation pour avoir la température de confort QUAND c'est nécessaire et OÙ on en a besoin.

→ éviter tout gaspillage d'énergie

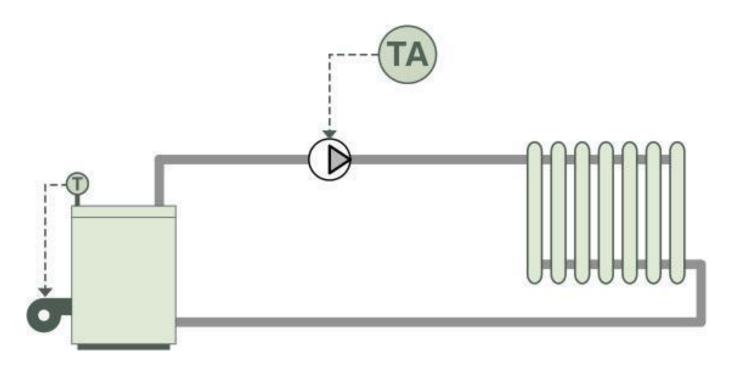
Impact énergétique de la régulation

1 °C de trop = 7 à 8% de surconsommation (par rapport à une consigne de 20°C)

Régulation de la T° intérieur

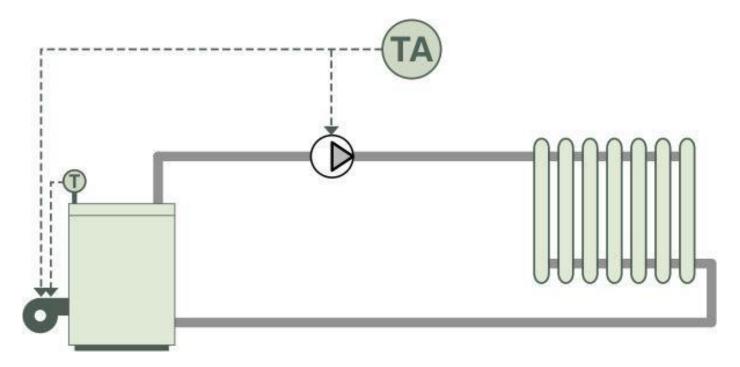
Objectifs:

- Ajuster la puissance délivrée par les radiateurs pour atteindre la bonne température
 - → température de l'eau distribuée
- Chauffer aux moments opportuns
 - → ajuster au mieux les horaires


Avec ces 2 actions, on pourra ainsi limiter au mieux les pertes par les conduites et en chaufferie!

Régulation des circuits typiques « unifamilial »

« T° constante » :


la <u>chaudière est maintenue constamment à température</u> au moyen de son thermostat interne (aquastat). Si un thermostat d'ambiance est présent, il commande uniquement le fonctionnement du circulateur.

Régulation des circuits typiques « unifamilial »

T° variable » (typique des maisons unifamiliales)
 La chaudière n'est portée à température que lorsqu'il y a une demande de chaleur.
 Thermostat d'ambiance agissant sur le brûleur et le circulateur (avec temporisation); Aquastat = Aquastat de sécurité

Régulation locale : vannes thermostatiques

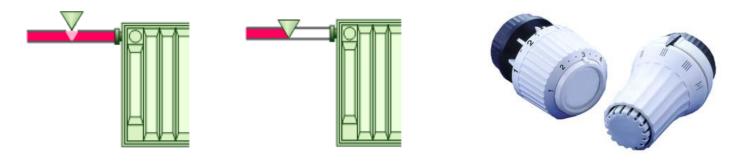
But :

- Pouvoir régler la température de confort de chaque local, en fonction de son affectation (salle de bain, chambre,...) et des désirs des occupants.
- Limiter la surchauffe en cas d'apports internes/solaires importants

Régulation locale : vannes thermostatiques

Principe de fonctionnement :

- La vanne est réglée sur une t° de consigne
- Si la température de consigne n'est pas atteinte (mesure de la température ambiante par le bulbe thermostatique), la vanne s'ouvre afin de laisser passer l'eau.
- Dès que la température de consigne est atteinte, la vanne se ferme


- 1. bulbe thermostatique
- 2. poignée de réglage
- 3. tige de transmission
- 4. ressort de rappel
- 5. clapet de réglage

81 250 480 | Fax: 081 250 490

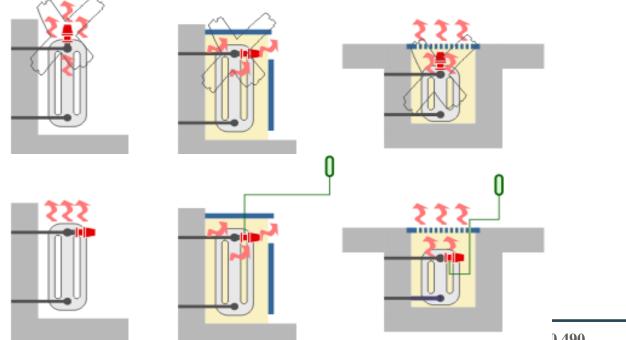
Comment fonctionne une VT?

 Une vanne thermostatique permet de limiter le débit dans les corps de chauffe pour ne pas dépasser une température de consigne.

- → Permet de réguler la T° dans les pièces dépourvue d'autre système de régulation (thermostat d'ambiance, sonde de température, ...)
- → Permet une différentiation des T° de chaque local
- → Permet de prendre en compte les influences extérieures difficilement prévisibles (apports solaires ou internes, etc)
- → Permet à l'occupant de gérer la température de son local

SOYEZ PARESSEUX...

Placer des vannes thermostatiques dans les locaux à fort apport de chaleur?


...Laissez la vanne du radiateur sur 3 ! (=20°c)

http://www.energieplus-lesite.be

ATTENTION:

- Eviter de mettre des vannes thermostatiques dans la pièce où se trouve le thermostat d'ambiance
- La vanne doit « mesurer » la température du local : éviter l'influence directe du corps de chauffe

Différents types de vannes thermostatiques :

Modèle standard avec sonde thermostatique et réglage libre incorporés.

Modèle standard avec sonde thermostatique séparée (pouvant être placée à distance) et réglage libre à distance.

Différents types de vannes thermostatiques :

Vannes thermostatiques programmables (horaire et température)

Vannes thermostatiques programmables à distance et de façon centralisée

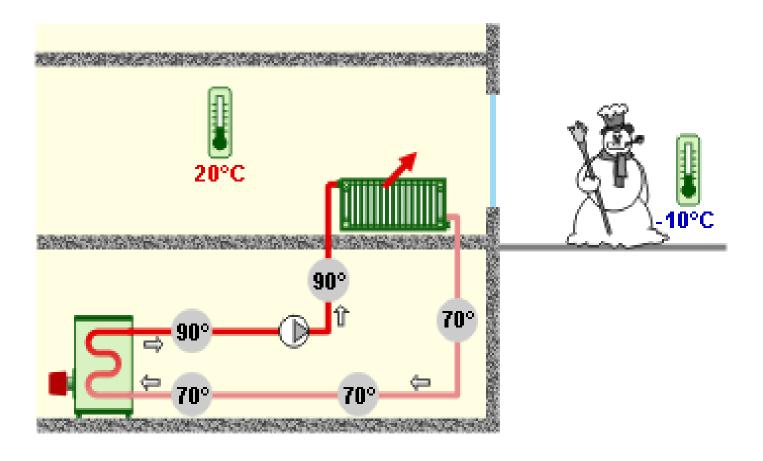
Différents types de vannes thermostatiques :

Vanne institutionnelle : le réglage de la consigne n'est pas accessible à l'occupant, elle résiste aux chocs (même d'un ballon de basket .) et ne peut être facilement démontée.

• Pourquoi ne pas réguler qu'avec des vannes thermostatiques ?

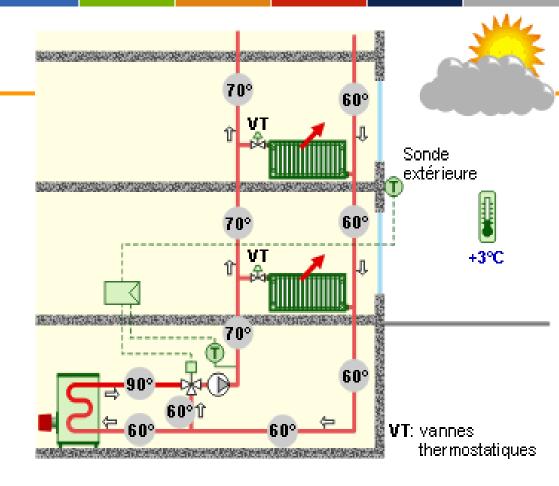
- Fonctionnent mal si la température de l'eau est trop élevée (pompage, sifflement)
- Ne permettent pas d'intermittence automatisée
- Ne permettent pas de limiter les pertes des chaudières et des circuits de distribution

Erreurs de manipulation les plus courantes :


- Dans un local inoccupé, la consigne des vannes thermostatiques a été réglée sur *. A l'arrivée des occupants, le chauffage ne sera pas relancé plus rapidement si l'on met la consigne sur 5 que sur 3.
- Dans un local occupé, l'expérience des occupants montre que la bonne température est atteinte avec une consigne de 3. Un jour, la température intérieure est insuffisante. Dans ce cas, cette dernière ne sera par améliorée si la consigne est mise sur 4.
- Le raisonnement inverse est aussi valable : si, subitement, il fait trop chaud (par exemple, à cause de l'ensoleillement), mettre la vanne sur 1 ne changera rien puisque le clapet de la vanne est en principe déjà fermé.

Sensibiliser les occupants!

Dimensionnement pour une situation extrême

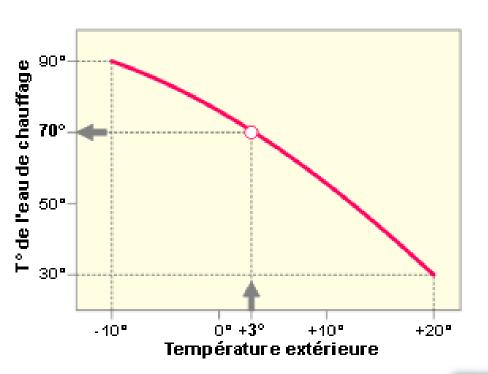


Quid en mi-saison?

La puissance que le radiateur doit délivrer est moindre

- → diminuer autant que possible la température de l'eau :
- on diminue les déperditions dans les conduites
- on favorise le bon
 fonctionnement des vannes
 thermostatiques

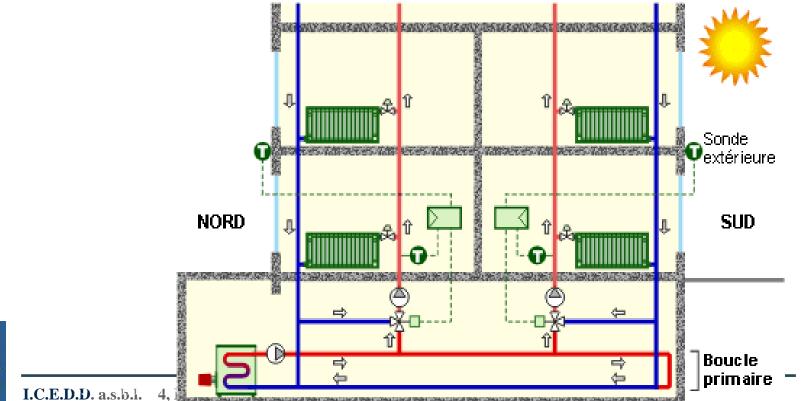
Pour diminuer la température d'eau :


- On a une vanne mélangeuse qui ajuste la température de l'eau des circuits en fonction de la température extérieure

On pilote la chaudière en température glissante

Régulation centrale de l'eau

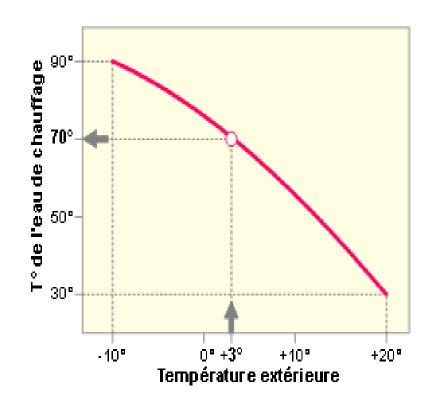
Régulateur climatique : commande la V3V (T° eau) pour délivrer la puissance suffisante dans le local le plus froid



Régulation de bâtiments plus complexes

Et s'il y a des locaux avec des besoins, des apports ou des horaires différents ?

Prévoir 1 circuit par affectation/zone et réguler la température d'eau de chaque circuit indépendamment



Régulation en T° glissante

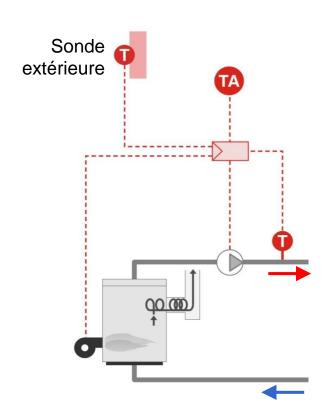
La <u>courbe de chauffe</u> :

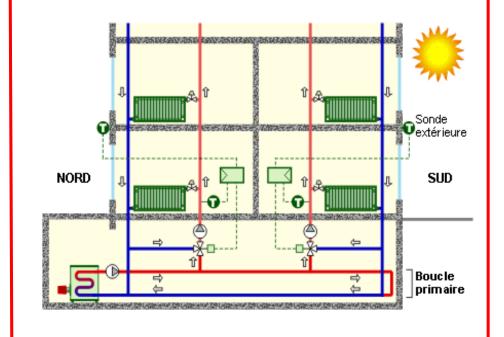
- est unique pour un bâtiment
- dépend :
 - de l'isolation du bâtiment
 - du surdimensionnement des radiateurs
 - des températures de consigne
- est définie par :
 - sa pente
 - son déplacement parallèle



Régulation en T° glissante

Température extérieure

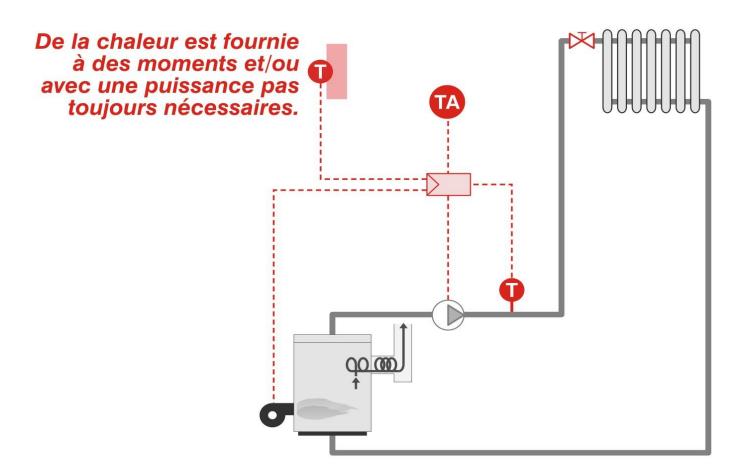




Régulation de la T° du fluide caloporteur

Soit la régulation en T° s'applique directement sur la chaudière

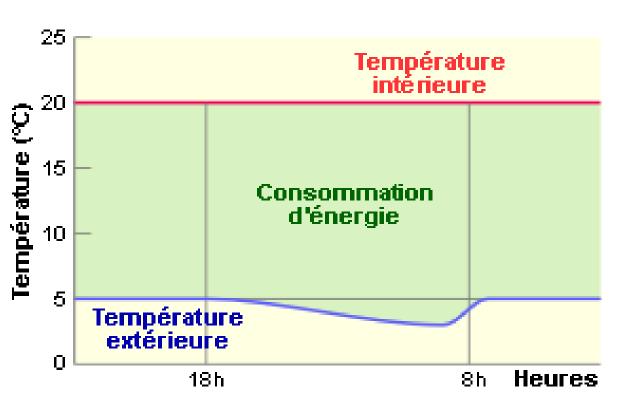
Soit la régulation en T° s'applique uniquement sur le(s) circuit(s) secondaires à l'aide d'une vanne 3 voies. La chaudière est alors maintenue à T° plus élevée.



Régulation en T° glissante

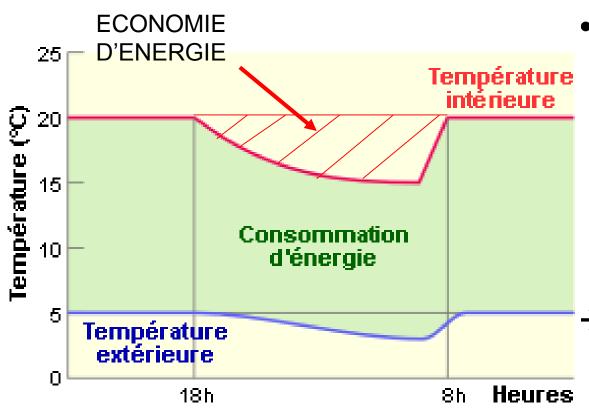
- Le réglage du régulateur climatique :
 - est unique
 - dépend du degré d'isolation du bâtiment et du surdimensionnement des corps de chauffe
- Le réglage ne doit pas être fait :
 - par le chauffagiste
 - au hasard en fonction des plaintes (les causes d'inconfort peuvent avoir d'autres origines)
 - ... mais par une personne vivant dans le bâtiment et tenant un historique des réglages

Régulation

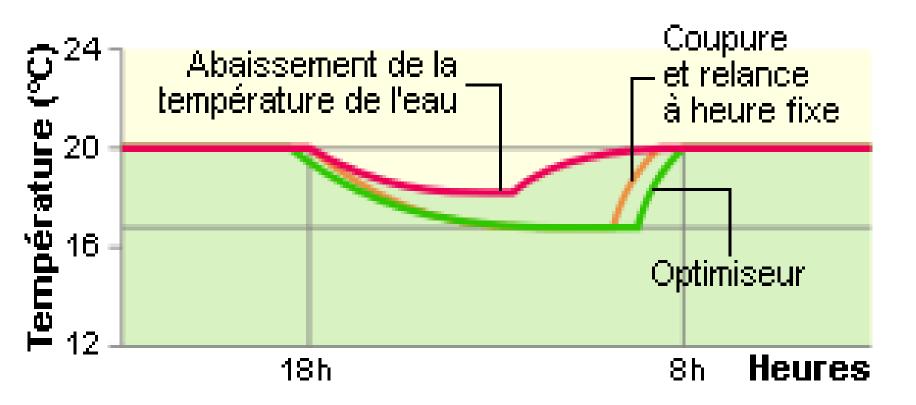


OBJECTIF : piloter l'installation pour avoir la température de confort QUAND c'est nécessaire et OÙ on en a besoin.

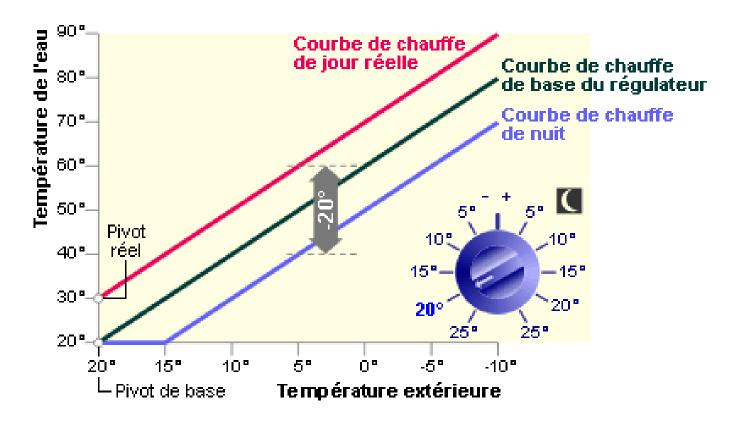
→ éviter tout gaspillage d'énergie


Intérêt de l'intermittence

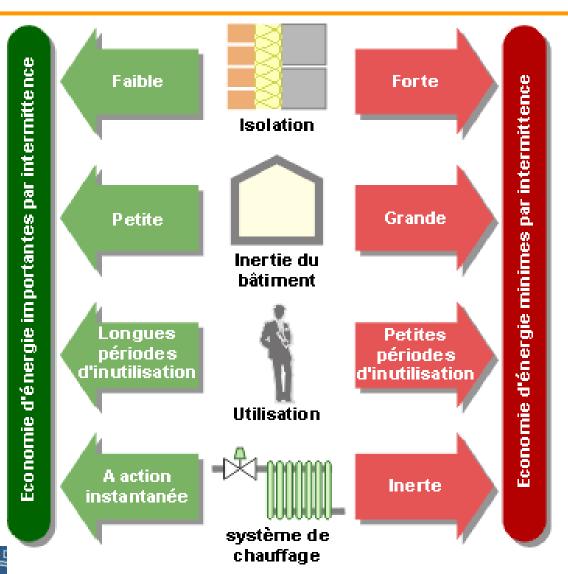
- Consommation
 proportionnelle à la
 différence de
 température entre
 l'intérieur et
 l'extérieur
- → Minimiser cette différence de température


Intérêt de l'intermittence

- Couper le chauffage fait chuter la température intérieure d'autant plus vite que le bâtiment est peu inerte (a peu emmagasiné de chaleur) et est mal isolé.
- → Couper le chauffage ou diminuer le plus possible la température intérieure durant la coupure.



Types d'intermittence


Types d'intermittence : abaissement de la température d'eau

Note : ce n'est pas la manière la plus performante d'assurer l'intermittence

Intérêt de l'intermittence

L'intermittence permet de réaliser des économies d'autant plus importante que l'isolation du bâtiment est faible, que l'inertie thermique du bâtiment est faible, ...

Intermittence

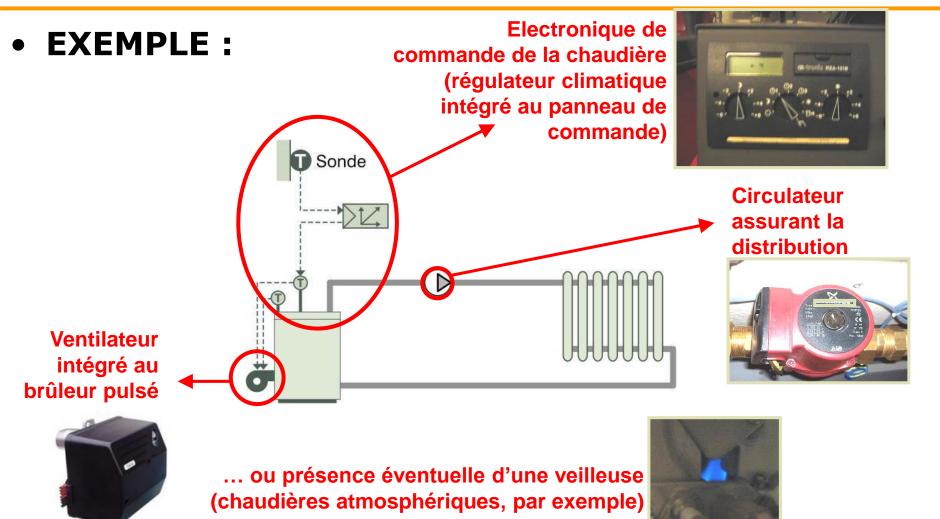
- Limite pour la température de consigne basse?
 - Minimum 12 °C :
 - Si inférieure -> risque de condensation
 - Si inférieure : murs trop froids malgré la relance => inconfort
 - 12°C dans le local témoin = garantie de maintenir l'ensemble du bâtiment hors-gel.

Cette température ne sera en principe atteinte que par grand froid et/ou en période d'inoccupation prolongée

Il faut une puissance de relance suffisante

Intérêt de l'intermittence

"Cela ne sert à rien de couper le chauffage durant la nuit, la chaleur économisée est repayée en début de journée suivante pour recharger les murs !"



Plan de l'exposé

- Introduction
- La production
- La distribution
- L'émission
- La régulation
- Les auxiliaires
- Focus sur les installations à condensation
- Remplacer une chaudière / rénover une chaufferie
- Conclusions

Auxiliaires

Veilleuse

 La consommation d'une veilleuse équivaut à une ampoule électrique de 100 W allumée en permanence !!!

- Consommation sur un an ~ 100 m³ de gaz ou ~ 60 €
- → Eteindre complètement la chaudière en dehors de la période de chauffe (si l'eau chaude sanitaire est produite séparément)

Fonction d'un circulateur

- Faire circuler l'eau dans l'installation
 - → vaincre les pertes de charge
 - → assurer le débit d'eau nécessaire pour irriguer l'installation

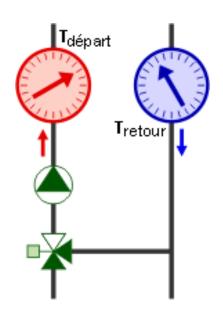
Il existe :

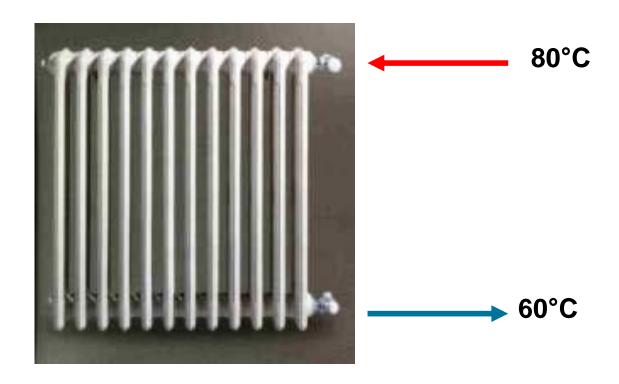
- Des circulateurs standards à une ou plusieurs vitesses (ne sont plus commercialisés depuis 2014).
- Des circulateurs à vitesse variable : la vitesse varie en fonction de la variation de pression dans le réseau.

Circulateurs standards

Circulateurs « standards »

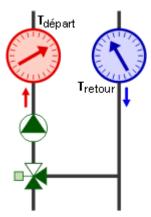
Circulateurs à 1 ou plusieurs vitesses (3 ou 4) dont la vitesse de rotation (débit) est réglée manuellement et reste fixe quelques soient les conditions d'exploitation

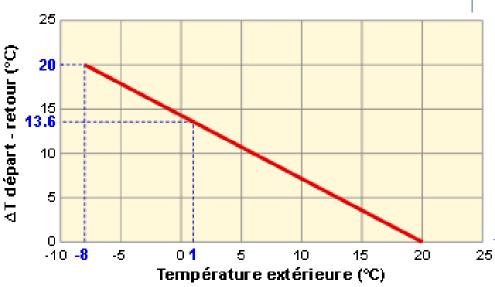

- → Bien souvent, ces circulateurs sont surdimensionnés lors de la conception, ou suite à l'usage réel du système de chauffage.
 ... par exemple, dans une habitation dont de nombreuses pièces ne sont plus chauffées (vannes fermées).
- → Pour les circulateurs à plusieurs vitesses il peut être utile de tenter de réduire la vitesse, soit en permanence, soit selon la saison. En cas d'inconfort, il est aisé de retourner aux réglages initiaux.



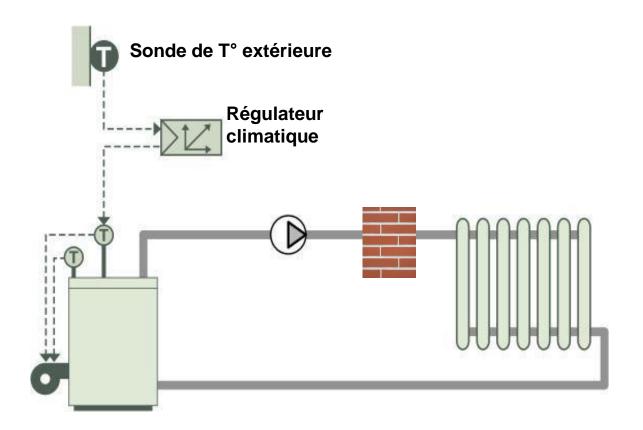
Réduire la vitesse des circulateurs

Indice:


... par -10°C ext...

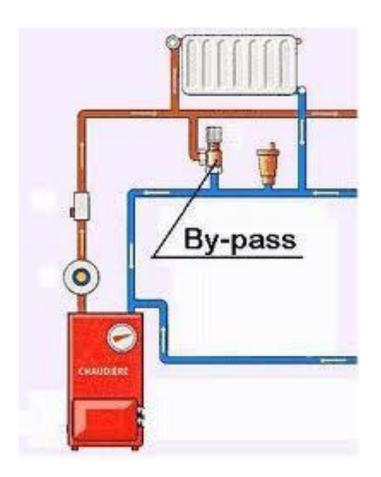


Réduire la vitesse des circulateurs



- Réduire d'un cran la vitesse des circulateurs secondaires permet de gagner ...20% ... de leur consommation électrique
- Indice : la différence entre la température de départ et de retour
 - Pour une température extérieure de 1°C, Tdépart –Tretour devrait être de l'ordre de 13 .. 14°C
 - Si elle est de 6 .. 7°C, le débit est vraisemblablement 2 x trop élevé.

Que se passe-t-il lorsque les VT sont fermées ?



Le circulateur pousse sur un « mur »!

- → usure prématurée du circulateur
- → consommation électrique inutile

Que se passe-t-il lorsque les VT sont fermées ?

Avec des circulateurs « standards », il y a toujours un bypass! (vanne de pression différentielle entre le départ et le retour)

Circulateurs à vitesse variable

• Circulateurs « à vitesse variable »
Circulateurs dont la vitesse de rotation est réglée
automatiquement de façon à ajuster en continu la
pression différentielle en un point du circuit.

→ seule la puissance nécessaire est consommée

(pas de surdimensionnement)

Circulateurs à vitesse variable

De plus, un circulateur à vitesse variable peu avantageusement remplacer une soupape de pression différentielle

→ ce circulateur diminuera automatiquement le débit si des vannes thermostatiques se ferment (→ diminution de puissance consommée) alors qu'avec une soupape de pression différentielle la puissance consommée reste identique en pareille situation

→ selon les cas, économie de 30% à 50% sur la consommation électrique annuelle !

Exemple

4 vitesses et donc 4 puissances :

83 W

72 W

55 W

41 W

- Diminution de la vitesse de 1 cran sur la saison de chauffe : (83-72) W x 5800 h = 64 kWh ou ~13 €/an
- Coupure circulateur en été (hors saison de chauffe) :

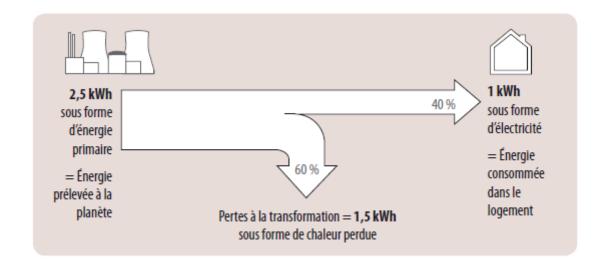
72 W x 3000 h = 216 kWh ou ~43 €/an

Temporisation du circulateur

 La commande du circulateur peut être intégrée à la régulation de l'installation :

le circulateur est mis en route en même temps que le brûleur et une temporisation commande son arrêt de 5 à 15 minutes après l'arrêt du brûleur pour évacuer la chaleur résiduelle de la chaudière

Exemple : circulateur de 72 W à vitesse fixe

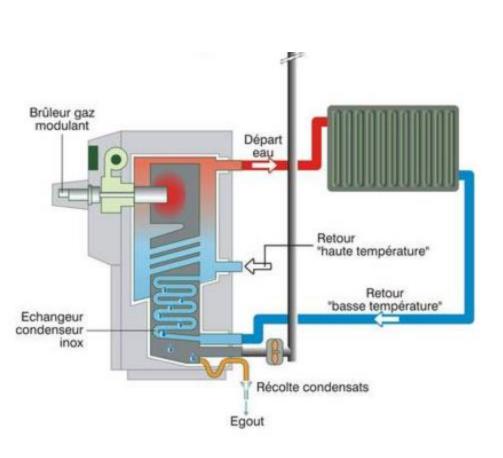

	Consommation annuelle [kWh/an]			
Fonctionnement continu durant la période de chauffe	420			
Fonctionnement discontinu durant la période de chauffe	252 - 40%			

Hypothèses : coefficient de charge = 10 %, période de chauffe = 6000 h, temporisation = 5 min,

Energie primaire

- Pour les combustibles, les pertes de transformation et de transport sont négligeables => énergie primaire = énergie finale
- Pour l'électricité :

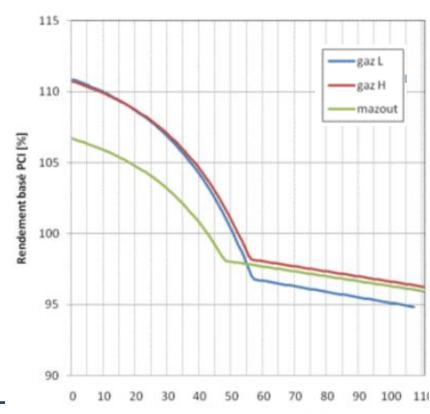
=> énergie primaire = 2,5 x énergie finale



Plan de l'exposé

- Introduction
- L'émission
- La régulation
- La distribution
- La production
- Les auxiliaires
- Focus sur les installations à condensation
- Remplacer une chaudière / rénover une chaufferie
- Conclusions

Chaudière à condensation


Chaudières à condensation

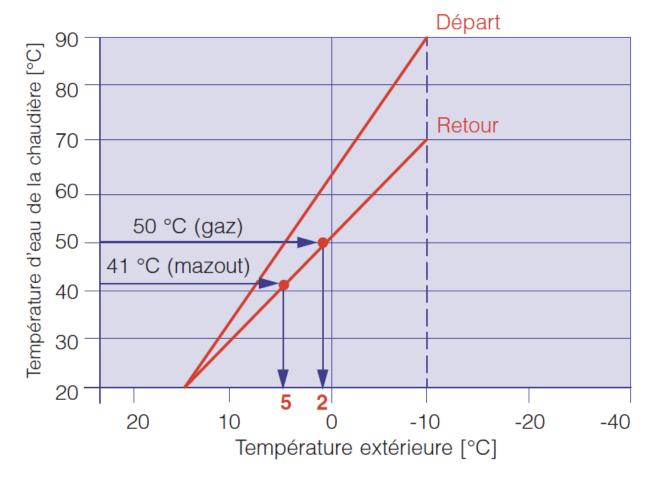
- ... ne sont pas des boîtes noires qui condensent d'office !!!

 La condensation n'a lieu que si :
 - → Les fumées sont suffisamment refroidies pour que la vapeur d'eau puisse condenser

Point de rosée ~ 54...58° pour le gaz

Point de rosée ~ 45...48° pour le mazout

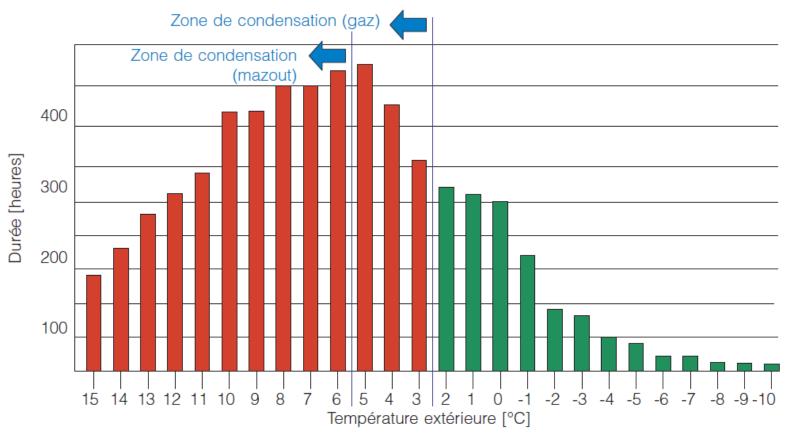
Chaudières à condensation


Paramètres influençant la condensation :

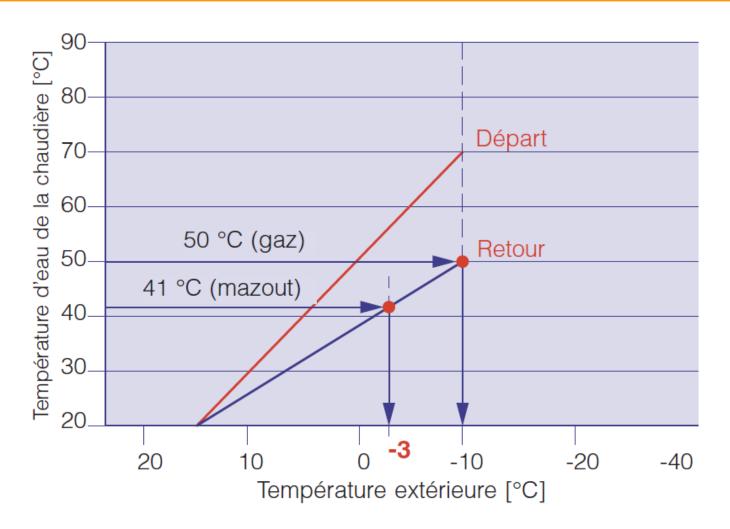
- Température des fumées basse implique :
 - Une T° d'eau au retour la plus faible possible
 - Émetteurs dimensionnés pour travailler à basse température (si possible)
 - Régulation en T° glissante de la température de départ
 - Hydraulique adaptée : éviter les retours chauds
 - Un échangeur efficace (rapport S_{échange} / P_{brute})
 - Opter pour un brûleur qui délivre la puissance strictement nécessaire (brûleur modulant)

Régulation en T° glissante & Dimensionnement des émetteurs

T° de départ et de retour en fonction de la T° extérieure

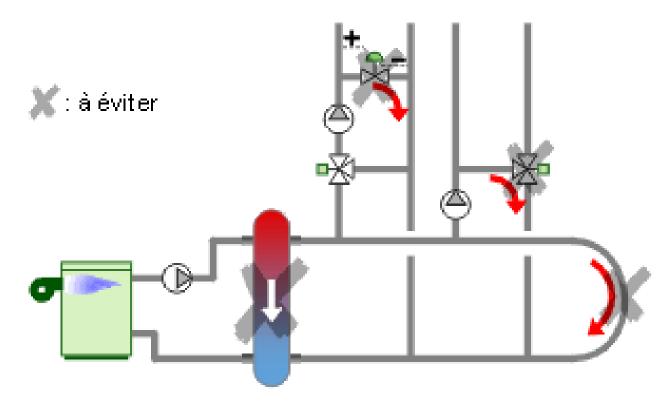

Régime classique 70 / 90 °C

Régulation en T° glissante & Dimensionnement des émetteurs


Durée pendant laquelle la température extérieure présente une valeur donnée au cours de la saison de chauffe

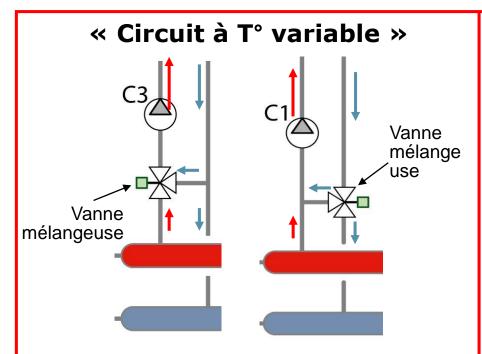
Régulation en T° glissante & Dimensionnement des émetteurs

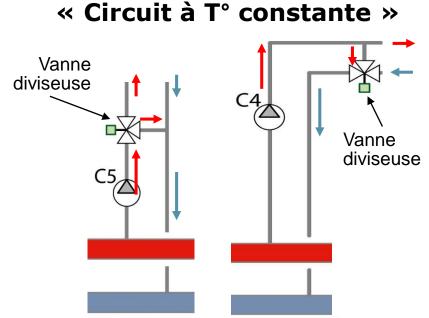
Régime
50 / 70 °C
par exemple,
radiateurs
surdimensionnés



Principes:

- Ne jamais
 mélanger, avant
 le condenseur,
 l'eau de retour
 froide et l'eau
 chaude de départ
- Toujours

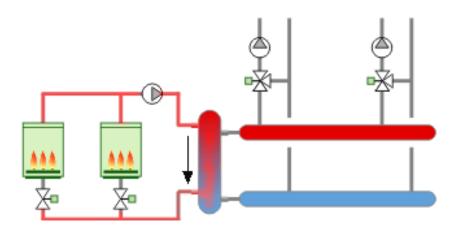

 alimenter le
 condenseur avec
 les retours les
 plus froids


Circuit à T° variable vs Circuit à T° constante

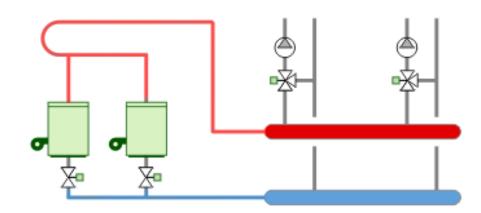
• Le type du circuit dépend des positions de la vanne et du circulateur ...

Eau circulant dans le circuit secondaire :

- Débit constant
- T° variable


Eau circulant dans le circuit secondaire :

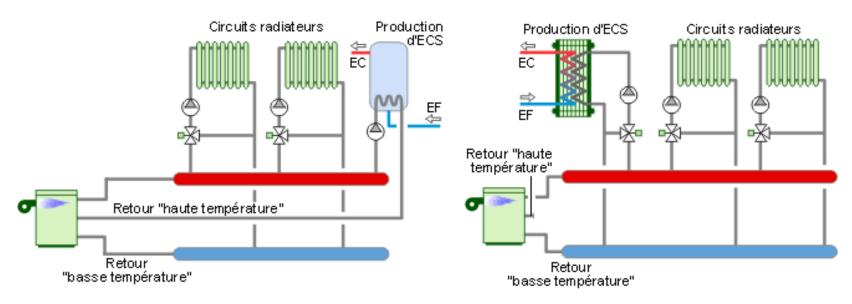
- Débit variable
- T° constante



Pour la condensation, il faut que la température d'eau de retour soit la plus froide possible ...

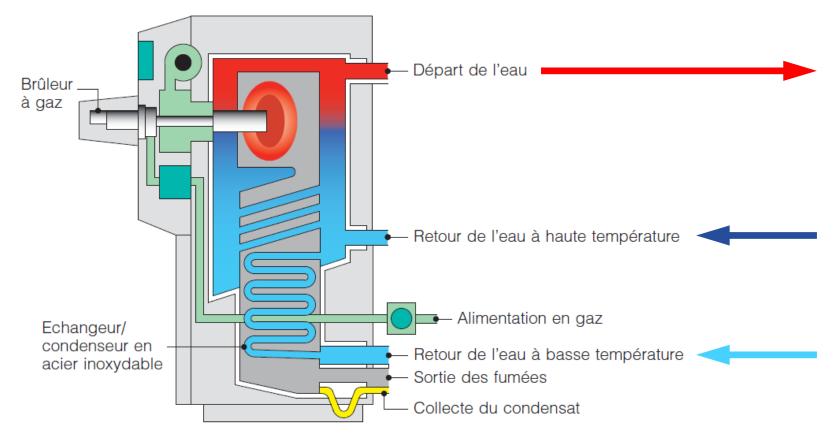
Schéma défavorable à la condensation

Schéma favorable à la condensation



Quid si production d'ECS couplée ?

Si chaudière à condensation :


... **soit** chaudière à grand volume d'eau et 2 retours distincts

- ... soit dimensionner les échangeur ECS afin d'avoir des retours
- « froids » (échangeur à plaque)

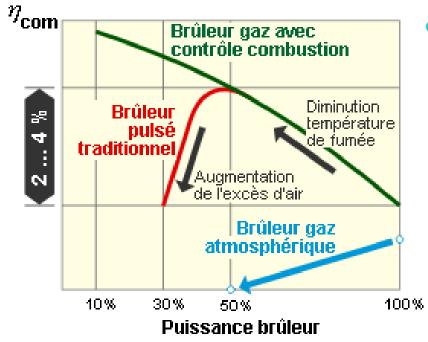
soit découpler la production d'ECS et de chauffage

- Si il existe des circuits à T° de retour différentes
 - → chaudières à raccords multiples

Echangeur efficace

Séchange / Pbrute

Surface de l'échangeur est fixe (échangeur = chaudière)

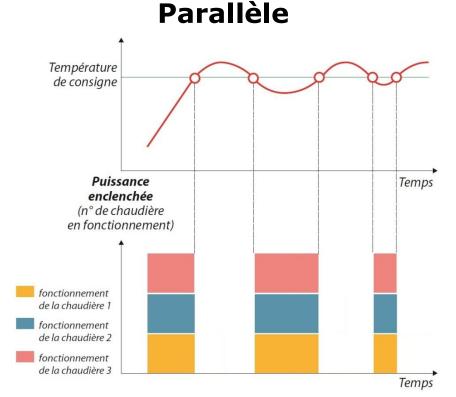

- → Agir sur la puissance!
- → Diminuer autant que possible la puissance = ajuster au mieux la puissance en fonction des besoins

Comment?

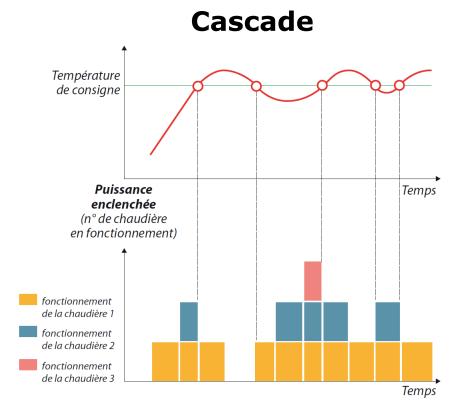
Etager les niveaux des puissances en ayant recours à :

- → des brûleurs à deux allures ou, mieux, à des brûleurs modulants
- → plusieurs chaudières (éventuellement à plusieurs allures) et régulées en cascade

Étagement de puissance sur un brûleur


Pour les brûleurs pulsés 2 allures :

- → Si la puissance de la 1ère allure n'est pas trop basse (= ~60%), un gain de ~2 à 2.5% de rendement de combustion en 1ère allure est possible
 - Car, si <u>puissance diminue</u> (en restant au-dessus d'une certaine valeur ~50% de la P_{chaudière} pour des chaudières standards):
 - → transfert de chaleur amélioré au sein de la chaudière
 - → les <u>fumées</u> évacuées sont <u>plus froides</u>
 - → les <u>pertes</u> par les fumées <u>diminuent</u>
 - → le rendement de combustion augmente



Étagement de puissance avec plusieurs chaudières

Principe du fonctionnement en parallèle ou en cascade

→ Pertinent si toutes les chaudières sont récentes (bien isolées), modulantes sur une large plage de puissance et à condensation

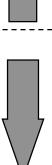
→ Pertinent dans les autres cas

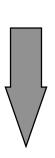
La condensation au mazout?

Combustible	Pouvoir calorifique	Pouvoir calorifique inférieur moyen (H _i)	Chaleur latente récupérable (Q _{lat}) par condensation complète de la vapeur d'eau			par condensation complète de la			Quantité de vapeur d'eau (M) produite	
	supérieur moyen (H _s)			Q _{lat}	/ H _i	par la combus- tion de 1 kg	באנומוי טכ			
			$Q_{lat} = H_s - H_i$	[kWh/ kWh]	[%]	ou de 1 m³ de combustible (¹)				
Mazout normal ou extra (²)	12,67 kWh/kg (³) 10,63 kWh/l (⁴)	11,88 kWh/kg (³) 9,96 kWh/l (⁴)	0,79 kWh/kg	0,066	6,65	1,18 kg/kg	֓֞֞֝֞֜֝֞֝֟֝֝֓֓֓֓֓֓֓֓֞֝֟֝֓֓֓֓֡֝֡֓֡֝֡֓֓֓֡֝֡֡֡ ֖֓֞֓֓֓֓֞֓֓֓֞֓֓֓֞֩֓֓֓֓֓֞֩֡֓֓֓֡֓֡			
Gaz naturel L	9,79 kWh/m³ (⁵)	8,83 kWh/m³ (⁵)	0,96 kWh/m ³	0,108	10,85	1,43 kg/m³	2			
Gaz naturel H	10,94 kWh/m³ (6)	9,87 kWh/m³ (⁶)	1,07 kWh/m ³	0,108	10,81	1,59 kg/m³	מממוכוכ			
Butane	33,50 kWh/m³ (⁷)	30,45 kWh/m³ (⁷)	3,05 kWh/m ³	0,101	10,10	4,54 kg/m³	2			
Propane	25,90 kWh/m³ (⁷)	23,70 kWh/m³ (⁷)	2,20 kWh/m³	0,093	9,30	3,27 kg/m³				

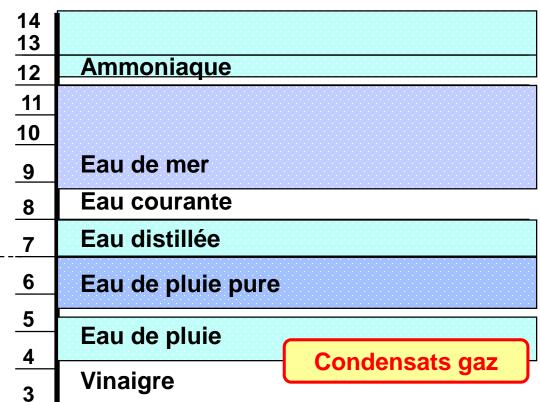
- (1) Calculée sur la base d'une chaleur d'évaporation/condensation de 2418 kJ/kg (0,671 kWh/kg).
- (2) Taux de soufre de 1000 ppm (mazout normal) et de 10 ppm (mazout extra).
- (3) Source: CEDICOL (Centre d'information sur les combustibles liquides).
- (4) Valeur calculée sur la base d'une masse volumique de 0,838 kg/l.
- (5) Source: moyenne annuelle établie en 2006 par Fluxys pour le gaz de Slochteren (référence 15 15 °C et 1013,25 mbar).
- (6) Source: moyenne des moyennes annuelles établies en 2006 par Fluxys pour les gaz d'Ekofisk, de Troll, d'IZTF, de Russie et d'Algérie (référence 15 15 °C et 1013,25 mbar).
- (7) Source: Comité français du butane et du propane (15 °C et 1013,25 mbar).

La condensation au mazout?


Max. 7% de chaleur latente récupérable (contre ~11% pour le gaz)


- Point de rosée du mazout plus faible (45 .. 48°C) que celui du gaz (54 .. 58°C)
 - → moins de condensation que pour le gaz, toutes autres choses restant égales
 - → Travailler avec des T° d'eau encore plus faibles
 - → Surdimensionner davantage les corps de chauffe

La condensation au mazout?


- Chaudière à condensation au mazout: Hq
- → Condensats acides basique (production de H_2SO_4)
 - → chaudières encore plus résistantes (surcoût
 - + important)
 - → traitement des condensats avant rejet (neutralisation)
- → En général, utilisation de fuel « extra » à faible teneur en souffre (combustible plus cher).

2

Jus de fruit

Acide fort

Condensats mazout

Impératifs liés à la condensation

• Évacuation des condensats

- à l'égout
 Une chaudière de 70 kW produit +- 4 litres de condensats par heure !!!
- en matière plastique car pH acide (neutralisation préalable si chaudière mazout)

Impératifs liés à la condensation

Quelle quantité de condensats ?

Une chaudière à condensation de 250 kW produit environ 14 litres par heure de condensats soit l'équivalent de 1 chope par minute ...

Impératifs liés à la condensation

• Cheminée

- résistante à la corrosion
- étanche à l'eau
- → Tubage de la cheminée obligatoire (inox ou PPS)

NOTE : le tubage est souvent nécessaire pour une chaudière basse T° également !

Plan de l'exposé

- Introduction
- L'émission
- La régulation
- La distribution
- La production
- Les auxiliaires
- Focus sur les installations à condensation
- Améliorer / rénover une chaufferie
- Conclusions

 Vérifier le rendement de combustion et voir s'il est possible d'améliorer celui-ci

3. MESURES (3)									
	Unité	Application	Mesures in	itiales (RBC)	Mesure	s finales	Exigences	Confo	ormité
			Allure 1	Allure 2	Allure 1	Allure 2 ^(*)		OK	Non OK
Température d'eau (4)	°C	1-2							
Gicleur: marque/type	1	1							
Gicleur: débit	USG/h	1							
Gicleur: angle	0	1							
Pression pompe	bar	1			1				
Pression gaz	mbar	2							
(dé)pression cheminée	Pa	1-2							
Indice fumée	Bacharach	1							
Teneur en 0 ₂	%	1-2							
Teneur en CO ₂	%	1-2							
Teneur en CO	mg/kWh	1-2							
Tem. des gaz de combustion	°C	1-2							
Temp.de l'air de combustion	°C	1-2							
Température nette	°C	1-2							
Rendement de combustion	%	1-2							
Application = 1: combustible I	Application = 1: combustible liquide - 2; combustible gazeux								
Lea distrate des résultats et magure port à agrefor à este attratation									

Enjeu énergétique

1 % de rendement de combustion en plus = environ 1 % de consommation en moins

	Ancienne Chaudière 20 cs de 25 de	Nouvelle Shoudière Conconsi	Jensalion Jensalion
T° fumées	~ 180	~ 120	°C
Taux CO2 mazout	12,5 13	12,5 13	%
Taux CO2 gaz	10 11	10 11	%
Taux CO	0	0	ppm
Excès d'air	~ 20	~ 20	%
Tirage	~ 10 15	~ 10 15	Pa
Rendement	~ 90 92	~ 94 95	%

Vérifier la fermeture du clapet d'air lorsque la chaudière est à l'arrêt
 Enjeu énergétique

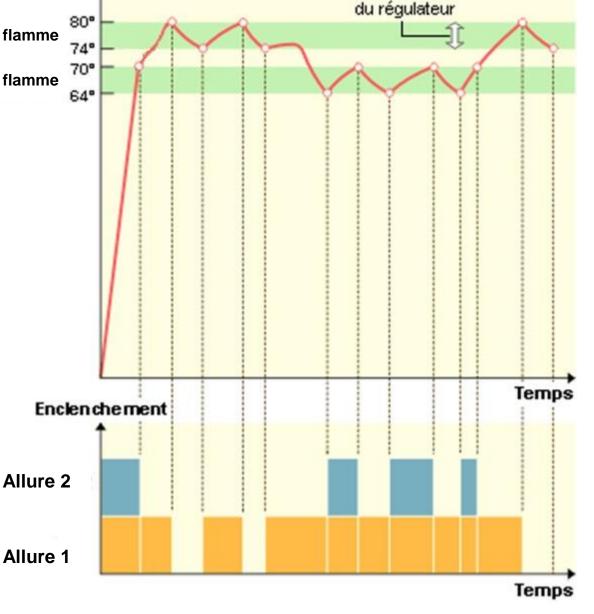
0,5 à 1 % de la puissance nominale de la chaudière

Vérifier si les 2 allures du brûleur sont bien commandées

Enjeu énergétique

2 à 3 % de rendement en plus

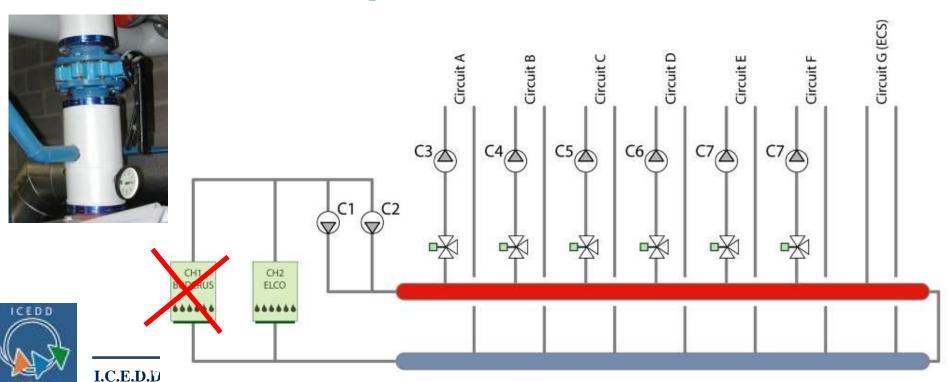
Différentiel

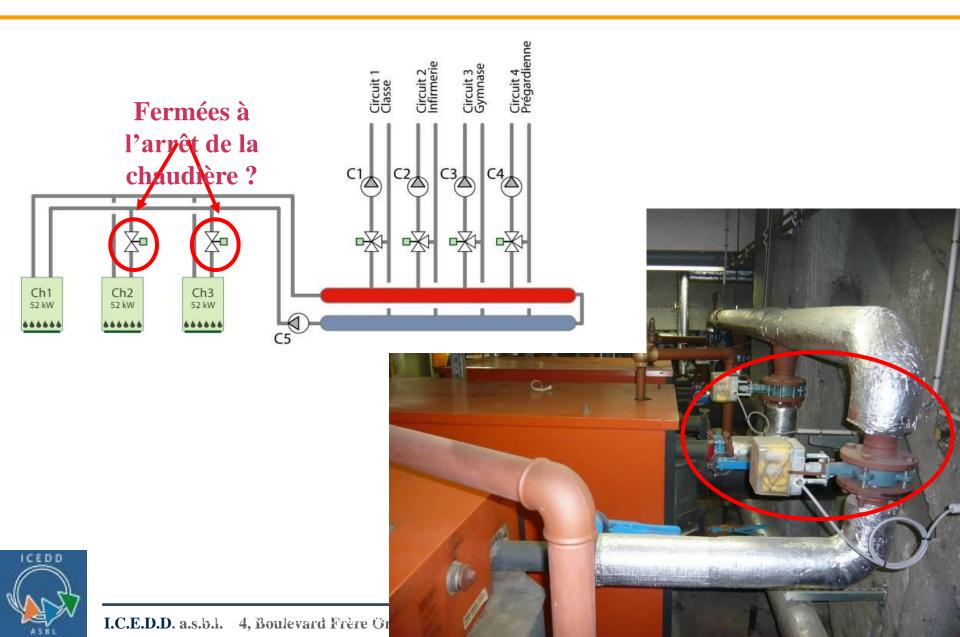

Consigne allure 1 = petite allure = petite flamme

Température de l'eau

Consigne allure 2 = grande allure = grande flamme

Une chaudière à deux allures:
ordre
d'enclenchement des allures d'un brûleur
... pour une régulation basée sur des aquastats

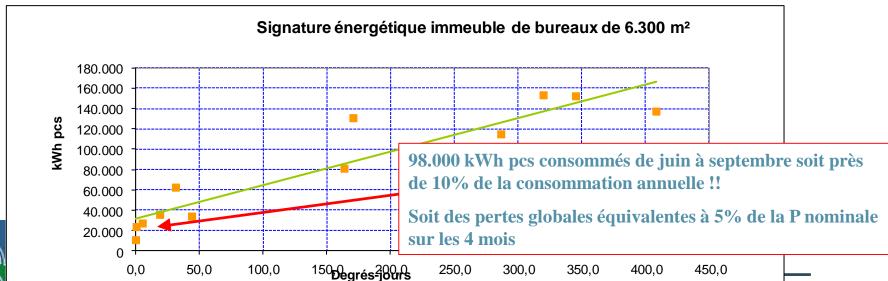

T° aquastat petite allure >
T°aquastat grande allure!
(sinon, fonctionnement
permanent en grande allure)



Vérifier le surdimensionnement et, si possible, mettre 1 chaudière à l'arrêt et isoler hydrauliquement cette chaudière (manuellement ou via cascade)
 Enjeu énergétique

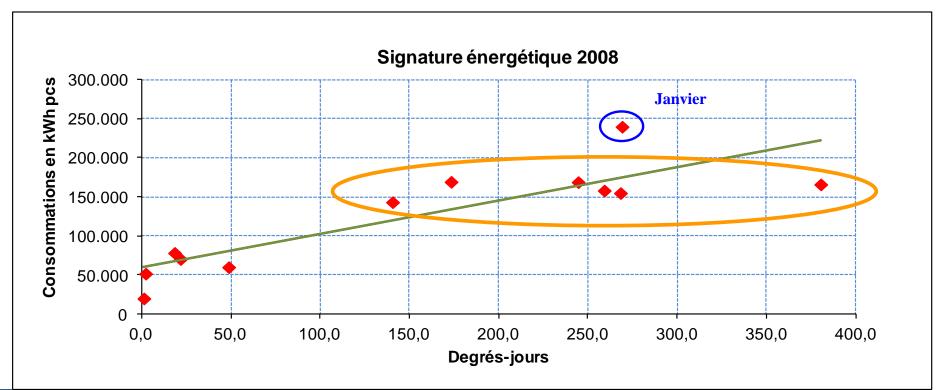
Les pertes à l'arrêt des chaudières inutiles maintenues en température

0,3 à 1,5 % de la puissance nominale de la chaudière



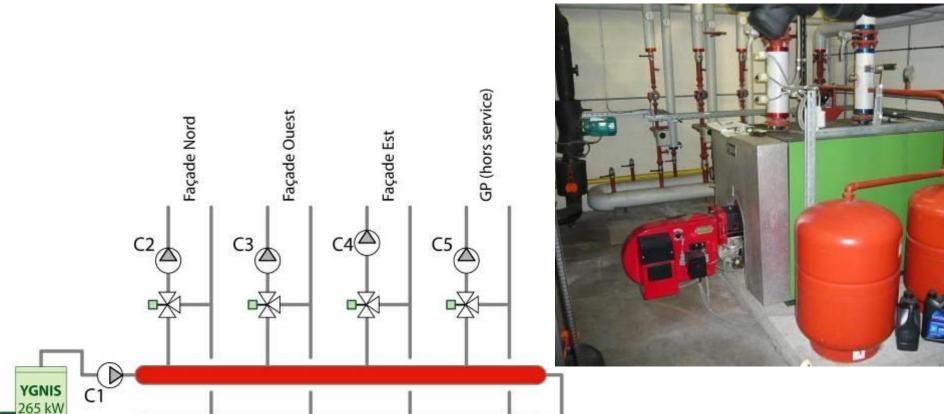
- Vérifier que les chaudières sont à l'arrêt en été
- > Pertes à l'arrêt observées tout l'été pour une chaufferie de 500 kW :

500 kW x 3000 h/an x 0,6 % = 9000 kWh/an ou 540 [€]

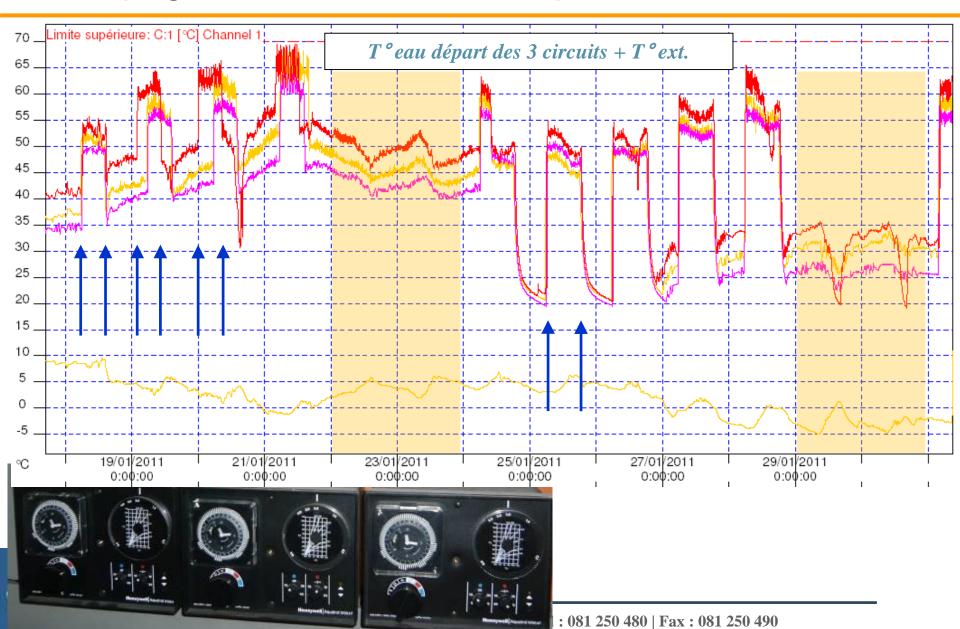

- > Approche réductrice si collecteur primaire est maintenu en température + consommation électrique de la pompe primaire
- > Exemple pour une chaufferie de 680 kW d'un immeuble de bureaux de 1993 consommant annuellement 1.000.000 kWh pcs

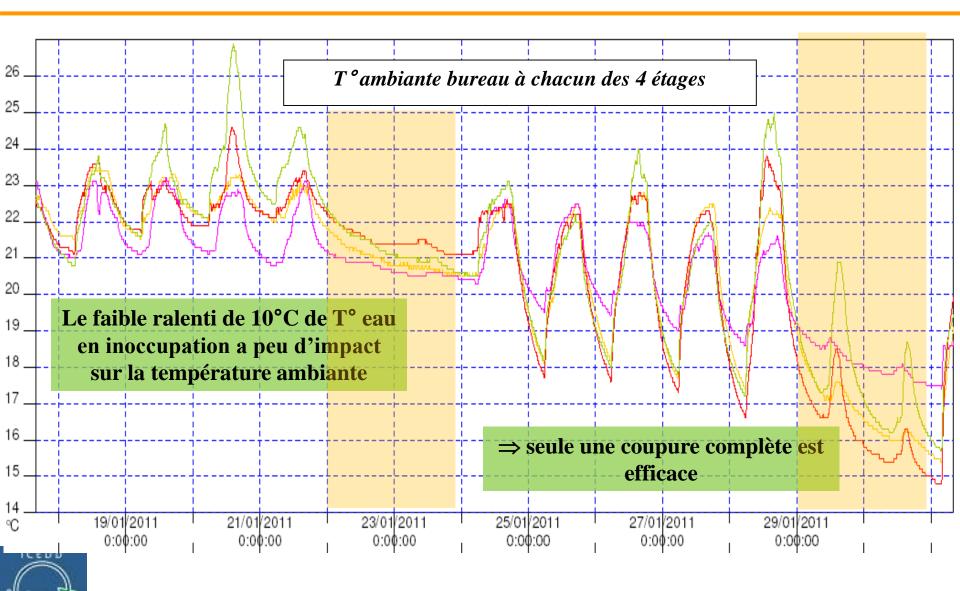
Vérifier que la régulation est fonctionnelle et bien paramétrée

1. Etablir la signature énergétique :



- Vérifier que la régulation est fonctionnelle et bien paramétrée
- 2. Réaliser une campagne de mesures :
- T° des conduites : collecteur primaire et circuits de chauffage (départs et retours)
- T° intérieure dans plusieurs locaux « représentatifs »
- T° extérieure afin d'évaluer si la T° de l'eau varie effectivement en fonction de la T° extérieure

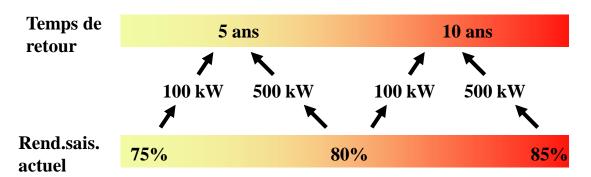




- > Chaudière de 265 kW équipée d'un brûleur gaz 2 allures
 - > Collecteur primaire en température constante
 - > 3 circuits radiateurs avec régulation climatique

1 250 480 | Fax: 081 250 490

Remplacement des chaudières existantes


Remplacer une chaudière, c'est l'occasion de repenser l'installation :

- Choix du combustible
- Redimensionnement des chaudières
- Choix des chaudières (chaudières à condensation ?)
- Régulation des chaudières et aussi des circuits de distribution (intégration de l'ensemble)
- Adaptation de la cheminée
- Mise en conformité de la chaufferie
- **—** ...

Remplacement des chaudières existantes

Anciennes chaudières atmosphériques maintenues en température;

Anciennes chaudières pulsées, surdimensionnées, rendement de combustion .. 86 ..%, brûleur sans clapet d'air fermé, cascade sans coupure hydraulique

Anciennes chaudières pulsées, bien dimensionnées, rendement de combustion .. 88 ..%, brûleur sans clapet d'air fermé, cascade sans coupure hydraulique

Anciennes chaudières pulsées, bien dimensionnées, rendement de combustion .. 90 ..%, clapet d'air fermé, cascade sans coupure hydraulique

Remplacement des chaudières existantes

- Opter pour la condensation ? A priori, « OUI MAIS »
- ... il y a lieu respecter quelques points d'attention !
 - → Vérifier le dimensionnement du système d'émission (pratiquement toujours OK si radiateurs mais à vérifier si convecteurs)
 - → Vérifier le schéma hydraulique. Si nécessaire prévoir de l'adapter.
 - → si gaz, opter pour un brûleur modulant à large plage de modulation + régulation des paramètres de combustion si mazout, opter pour un brûleur à 2 allures.
 - → Bien dimensionner la puissance des chaudières afin de maximiser le rendement saisonnier

Importance d'un bon dimensionnement

 Impact du surdimensionnement de la chaudière et du brûleur :

On l'a vu:

- > Augmentation des pertes à l'arrêt,
- Augmentation des émissions polluantes et de l'encrassement ...

... mais aussi un **surinvestissement**!

En résumé ...

Pour un remplacement de chaudière(s) :

Si le gaz est disponible :

- → une chaudière **gaz à condensation** ou, si on désire une continuité d'approvisionnement en cas de panne :
 - la combinaison de deux chaudières à condensation en parallèle,
 - la combinaison d'un chaudière à condensation en cascade avec une chaudière basse température.
- → dimensionnée selon la norme,
- → équipée d'un brûleur modulant (avec une grande plage de modulation : de ~10 à 100 %) et avec une régulation de la combustion sur toute la plage de modulation,
- → raccordée à un circuit hydraulique favorisant au maximum la condensation et de préférence le plus simple possible de manière à éviter les erreurs de conception et de régulation.

En résumé ...

si le gaz n'est pas disponible :

- → une ou plusieurs chaudières (si on désire une assurance de fourniture de chaleur en cas de panne),
- → à « condensation » ou à « haut rendement », travaillant avec des températures fumées les plus basses possibles.
- → équipée d'un **brûleur à 2 allures**,
- → équipée d'un compteur fuel.

Plan de l'exposé

- Introduction
- L'émission
- La régulation
- La distribution
- La production
- Les auxiliaires
- Focus sur les installations à condensation
- Remplacer une chaudière / rénover une chaufferie
- Conclusions

Ordres de grandeurs

Type d'installation	Rendements en % $ (\eta_{\text{global}} = \eta_{\text{production}} \ x \ \eta_{\text{distribution}} \ x \ \eta_{\text{émission}} \ x \ \eta_{\text{régulation}}) $				
	$\eta_{production}$	η _{distribution}	η _{émission}	η _{régulation}	η_{global}
Ancienne chaudière surdimensionnée, longue boucle de distribution	75 80 %	80 85 %	90 95 %	85 90 %	46 58 %
Ancienne chaudière bien dimensionnée, courte boucle de distribution	80 85 %	90 95 %	95 %	90 %	62 69 %
Chaudière haut rendement, courte boucle de distribution, radiateurs isolés au dos, régulation par sonde extérieure, vannes thermostatiques,	90 93 %	95 %	95 98 %	95 %	77 82 %

Conclusions

- Entre l'énergie finale (que l'on paie) à l'entrée du bâtiment et la chaleur restituée dans les locaux pour assurer le confort voulu : un long parcours jalonné de pertes
- La compréhension des différents mécanisme de pertes permet d'améliorer les performances de l'installation
 - par sa gestion quotidienne
 - par des améliorations ponctuelles
 - par sa rénovation

Conclusions

- Il est nécessaire d'assurer une cohérence globale :
 - Une action sur un poste peu avoir des répercussions sur un autre exemple : des radiateurs fonctionnant à basse température favorisent le rendement d'une chaudière à condensation
 - Chaque poste a son importance (rendement global = produits des rendements)
- La régulation est primordiale pour garantir les performances de tous les postes de l'installation
- Il est important de sensibiliser les utilisateurs au mode de fonctionnement du système de chauffage au niveau de l'émission et de la régulation locale/finale

