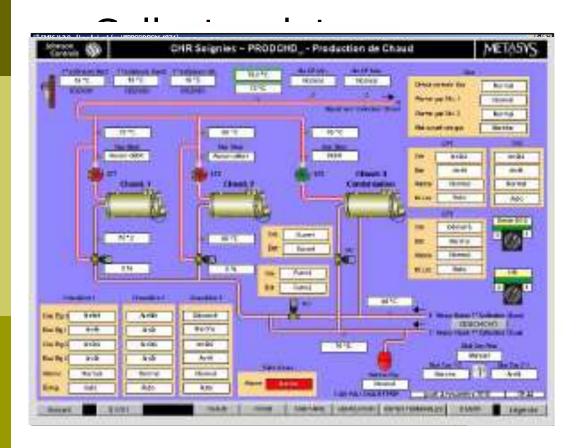


La comptabilité énergétique

Un outil de suivi des consommations des bâtiments

Nicolo Morgante Responsable énergie CHR Soignies


Sommaire

Comptabilité énergétique:

- □ qu'est-ce que c'est?
- A quoi ça sert?
- Pourquoi?
- □ Processus de mise en place
- Conclusions

Comptabilité énergétique: Qu'est-ce que c'est?

Comptabilité énergétique: A quoi ça sert?

La comptabilité énergétique:

- Elle permet de voir ce qui fonctionne mal, où et quand
- Elle permet un diagnostic mais ne résout pas les problèmes
 - → comme une radiographie

Comptabilité énergétique: pourquoi?

- Suivre les consommations des bâtiments
- Comparer un bâtiment d'une année à l'autre
- Comparer plusieurs bâtiments
- Benchmarking
- Détecter les dérives, les anomalies URE
- Mesurer les initiatives URE
- Etablir un budget énergie
- Répartir les consommations d'un site, entre services etc.
- Connaître son profil pour mieux négocier son contrat

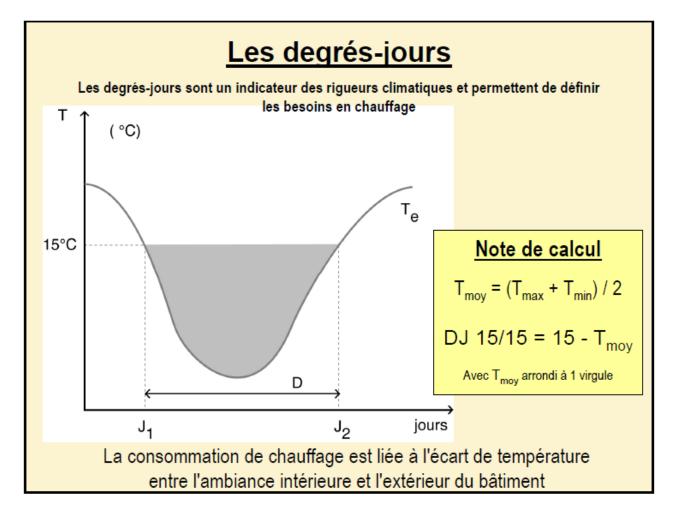
Comptabilité énergétique: comment?

Processus à suivre:

- Etablir l'inventaire des bâtiments et des points de consommation
- 1. Fixer la périodicité du suivi des consommations
- Mesurer les consommations et collecter les paramètres climatiques
- 3. Standardiser et normaliser les consommations
- 4. Etablir et interpréter la signature énergétique des bâtiments
- 5. Réaliser un cadastre énergétique des bâtiments

1. Etablir l'inventaire des bâtiments et des points de consommation

- Vue d'ensemble des bâtiments à gérer
- Etablir une fiche signalétique par bâtiment reprenant:
- Localisation, affectation des locaux
- Horaires d'occupation des locaux
- Surfaces au sol, volumes
- Vecteurs d'énergie (chaud, froid, électr. Etc)
- Les différents compteurs
- Caractéristiques de la production de chaud, froid
- Caractéristiques de l'enveloppe


2. Fixer la périodicité du suivi des consommations

Périodicité est déterminée en fonction:

- Des objectifs poursuivis (ex: bât. Énergivore)
- Des actions URE misent en place
- Des anomalies revelées à certains endroits
- Du types des consommations
- Du type de rapport (annuel ou mensuel)
- Du vecteur énergétique

3 Mesurer les consommations et collecter les paramètres climatiques

- Relever les degrés-jours mensuels
- □ T°moy 24h=18°c
- 3°c apports gratuit (int+ext)
- □ Text<15°c → on chauffe

3 Mesurer les consommations et collecter les paramètres climatiques

DEGRES-JOURS 16.5 - UCCLE - DECEMBRE 2005								
DATE	TEMP. MAX	TEMP. MIN.	TEMP. MOY.	TEMP. EQUIV.	DEGRES-JOURS EQUIV.		TEMP. MOY	DJ15/15
	(Tmax)	(Tmin)	(Tm)	(Te)	(Dje)		(Tmoy)	
01/12/05	4,0	-0,7	1,6	1,5	15,0		1,65	13,35
02/12/05	8,7	0,2	5,5	3,9	12,6		4,45	10,55
03/12/05	9,2	3,6	8,0	6,6	9,9		6,4	8,6
04/12/05	9,3	6,6	7,4	7,4	9,1		7,95	7,05
05/12/05	7,7	5,1	6.1	6.7	0.0		6.4	9.6
06/12/05	5,3	4,	TEMP.	MOY		DJ15/1	5	
07/12/05	7,1	4,						
08/12/05	7,7	4, (T	max+T	min)/2	SI(Tmoy	<=15.1	15-Tmov	v·0)
09/12/05	5,3	2,	max. I	111111/12	OI(IIIO)	٠ ١٥,	11110	y, o
10/12/05	6,3	-0,4	1,3	2,3	14,2		2,95	12,05
11/12/05	5,6	-2,0	0,7	1,1	15,4		1,8	13,2
12/12/05	8,2	-1,2	5,1	3,4	13,1		3,5	11,5
13/12/05	8,2	4,4	6,8	5,7	10,8		6,3	8,7
14/12/05	8,3	3,8	5,5	5,9	10,6		6,05	8,95
15/12/05	- - E	xemple	de ta	hleau c	le le		6,35	8,65
16/12/05	755 745							
17/12/05	conversion DJ16,5 en DJ15							
18/12/05		ù lac ti	rouver	• \٨/\٨/\٨/	gasinfo.be		1,6	13,4
19/12/05		u ies ti	ouvei	. <u>vv vv vv .</u>	gasiiiio.be		2,6	12,4
20/12/05							2,55	12,45
21/12/05	5,3	2,0	3,9	3,3	13,2		3,65	11,35
22/12/05	6,9	3,3	5,3	4,6	11,9		5,1	9,9
23/12/05	7,2	4,3	5,8	5,5	11,0		5,75	9,25
24/12/05	8,0	4,7	6,0	5,9	10,6		6,35	8,65
25/12/05	7,4	4,5	4,7	5,2	11,3		5,95	9,05
26/12/05	5,2	1,1	2,0	3,2	13,3		3,15	11,85
27/12/05	-0,7	-1,6	-1,4	0,2	16,3		-1,15	16,15
28/12/05	-0,8	-2,3	-2,2	-1,5	18,0		-1,55	16,55
29/12/05	-0,3	-7,0	-3,4	-2,8	19,3		-3,65	18,65
30/12/05	5,7	-6,7	-2,0	-2,4	18,9		-0,5	15,5
31/12/05	7,0	-3,8	5,0	2,1	14,4		1,6	13,4
				TOTAL	403,7	31	3,7	350,9

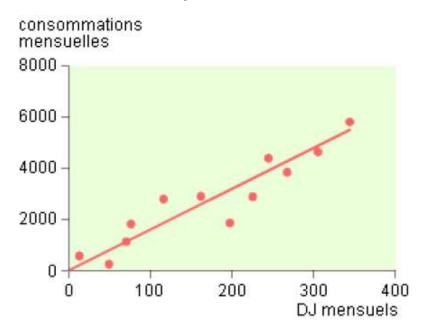
4 Standardiser et normaliser les consommations

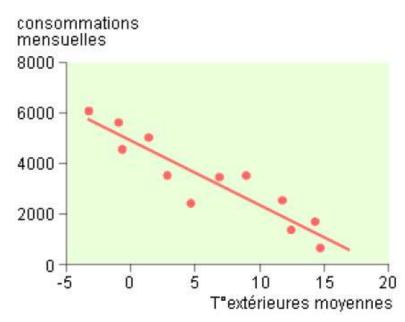
 □ Convertir les unités des relevés en valeurs standard → MJ ou kWh

	Conversion		
Vecteurs	Unité	en kWh	en MJ
Gaz naturel pauvre L (Bruxelles et Brabant wallon)	m³	9,25	33,30
Gaz naturel riche H (Wallonie, hors Brabant wallon)	m³	10,75	38,70
Mazout de chauffage	litre	9,94	35,80
Electricité	kWh	1,00	3,60
Gaz propane	litre	6,44	23,19
Gaz butane	litre	7,29	26,24

Valeurs sur PCI

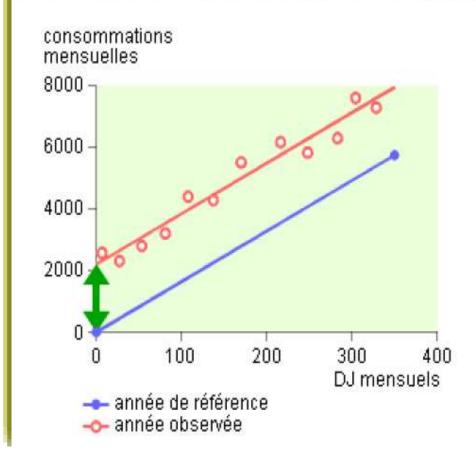
4 Standardiser et normaliser les consommations


- Suppression des variations dues au climat en ramenant les consommations à une année climatique normale
- DJ normaux entre 1975 et 2000 = 2010DJ
- Comparaison des consommations d'une année à l'autre
- Mise en place de ratios permettant la comparaison des consommations de bâtiments géographiquement distants



5 Etablir et interpréter la signature énergétique des bâtiments

- Signature énergétique = lien entre la consommation d'un bâtiment et le climat
- Visualisation graphique de l'évolution des consommations du bâtiment en fonction des rigueurs climatiques
- Permet de repérer les dérives de consommation en ayant neutralisé l'impact des variations climatiques



5 Etablir et interpréter la signature énergétique des bâtiments

3. Défaut de mise à l'arrêt du chauffage en période estivale,

6 Réaliser un cadastre énergétique des bâtiments

- Etablir le classement des bâtiments de son parc en fonction de leur qualité énergétique et de leur potentiel d'économie d'énergie
- Autrement dit:
 Identifier les bâtiments prioritaires en terme d'actions URE
- Etablir les ratios « consommation/surface » en kWh/m²
 → repérer les bâtiments les moins performants
- Etablir les ratios « (consommation)²/surface »
 → repérer les bâtiments à grand potentiel d'économie d'énergie ex:

	Bât A	Bât B
S	1.000 m ²	10.000 m ²
Cons.	150.000 kWh	1.000.000 kWh
Ratio 1	150 kWh/m²	100 kWh/m²
Ratio 2	22.500.000 kWh²/m²	100.000.000 kWh²/m²

Conclusions

- Comptabilité énergétique = outil de diagnostic objectif pour le RE
- Permet d'évaluer les actions URE
- Donne de la crédibilité au RE
- Coût d'installation non négligeable mais rentable à terme
 - → évolution du coût de l'énergie!!!!
- □ Subsidié à 50% en RW

Merci de votre attention

Nicolo Morgante

Responsable énergie Responsable du suivi des travaux

CHR Haute Senne

Chaussée de Braine 49 7060 Soignies

Tél: 067/348-881

nicolo.morgante@chrhaute senne.be